<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
ghdi/punic-model
This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 3.9858
- Validation Loss: 7.6193
- Epoch: 59
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -984, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
Training results
| Train Loss | Validation Loss | Epoch |
|---|---|---|
| 10.9100 | 10.8188 | 0 |
| 10.7129 | 10.4690 | 1 |
| 10.3775 | 10.1048 | 2 |
| 10.0587 | 9.8271 | 3 |
| 9.8034 | 9.6395 | 4 |
| 9.6209 | 9.5085 | 5 |
| 9.5047 | 9.4043 | 6 |
| 9.3724 | 9.3072 | 7 |
| 9.2873 | 9.2090 | 8 |
| 9.1690 | 9.1091 | 9 |
| 8.9963 | 9.0013 | 10 |
| 8.8724 | 8.8875 | 11 |
| 8.7316 | 8.7701 | 12 |
| 8.6070 | 8.6477 | 13 |
| 8.4242 | 8.5243 | 14 |
| 8.2700 | 8.4018 | 15 |
| 8.1555 | 8.2834 | 16 |
| 7.9978 | 8.1696 | 17 |
| 7.8495 | 8.0607 | 18 |
| 7.6980 | 7.9635 | 19 |
| 7.5339 | 7.8726 | 20 |
| 7.4741 | 7.7917 | 21 |
| 7.3669 | 7.7233 | 22 |
| 7.2598 | 7.6604 | 23 |
| 7.1434 | 7.6088 | 24 |
| 7.0434 | 7.5579 | 25 |
| 6.9874 | 7.5171 | 26 |
| 6.8629 | 7.4881 | 27 |
| 6.8293 | 7.4694 | 28 |
| 6.6349 | 7.4367 | 29 |
| 6.7589 | 7.4071 | 30 |
| 6.5890 | 7.4003 | 31 |
| 6.5476 | 7.3576 | 32 |
| 6.4606 | 7.3400 | 33 |
| 6.3945 | 7.3327 | 34 |
| 6.2495 | 7.3435 | 35 |
| 6.0722 | 7.3375 | 36 |
| 6.1324 | 7.3365 | 37 |
| 6.0493 | 7.3458 | 38 |
| 5.9514 | 7.4002 | 39 |
| 5.8638 | 7.3356 | 40 |
| 5.7390 | 7.3488 | 41 |
| 5.6403 | 7.3687 | 42 |
| 5.5442 | 7.3831 | 43 |
| 5.4542 | 7.3888 | 44 |
| 5.3243 | 7.4340 | 45 |
| 5.2295 | 7.4170 | 46 |
| 5.1436 | 7.4110 | 47 |
| 5.0199 | 7.5223 | 48 |
| 4.9058 | 7.5142 | 49 |
| 4.8393 | 7.4926 | 50 |
| 4.7104 | 7.5253 | 51 |
| 4.6212 | 7.5420 | 52 |
| 4.5298 | 7.5799 | 53 |
| 4.4251 | 7.5940 | 54 |
| 4.3130 | 7.5752 | 55 |
| 4.2240 | 7.6315 | 56 |
| 4.1587 | 7.6412 | 57 |
| 4.0442 | 7.6748 | 58 |
| 3.9858 | 7.6193 | 59 |
Framework versions
- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3