<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
opus-ecolindo
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-id on the EColIndo dataset. It achieves the following results on the evaluation set:
- Loss: 1.1254
- Bleu: 35.4242
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 4000
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu |
---|---|---|---|---|
1.4457 | 1.0 | 21019 | 1.1641 | 35.6285 |
1.1877 | 2.0 | 42038 | 1.1141 | 35.9198 |
1.1049 | 3.0 | 63057 | 1.0936 | 36.0605 |
1.049 | 4.0 | 84076 | 1.0821 | 36.0444 |
1.0051 | 5.0 | 105095 | 1.0794 | 36.6179 |
0.9685 | 6.0 | 126114 | 1.0751 | 36.7172 |
0.9376 | 7.0 | 147133 | 1.0751 | 36.407 |
0.9098 | 8.0 | 168152 | 1.0759 | 36.7071 |
0.8859 | 9.0 | 189171 | 1.0809 | 36.0112 |
0.864 | 10.0 | 210190 | 1.0800 | 36.1705 |
0.844 | 11.0 | 231209 | 1.0861 | 36.1114 |
0.8261 | 12.0 | 252228 | 1.0862 | 35.9952 |
0.8102 | 13.0 | 273247 | 1.0944 | 35.659 |
0.7945 | 14.0 | 294266 | 1.0982 | 35.5881 |
0.7812 | 15.0 | 315285 | 1.1019 | 35.8675 |
0.7688 | 16.0 | 336304 | 1.1066 | 35.5418 |
0.7576 | 17.0 | 357323 | 1.1087 | 35.7305 |
0.7472 | 18.0 | 378342 | 1.1116 | 35.4516 |
0.7377 | 19.0 | 399361 | 1.1162 | 35.3253 |
0.7298 | 20.0 | 420380 | 1.1185 | 35.2614 |
0.7233 | 21.0 | 441399 | 1.1203 | 35.5355 |
0.7162 | 22.0 | 462418 | 1.1220 | 35.3226 |
0.7116 | 23.0 | 483437 | 1.1226 | 35.3893 |
0.7075 | 24.0 | 504456 | 1.1250 | 35.4201 |
0.7037 | 25.0 | 525475 | 1.1254 | 35.4242 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.0
- Datasets 2.10.1
- Tokenizers 0.11.0