<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
rhenus_v3.3
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.1519
- Precision: 0.8149
- Recall: 0.8528
- F1: 0.8334
- Accuracy: 0.9717
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.43 | 100 | 0.9034 | 0.0270 | 0.0010 | 0.0020 | 0.8485 |
No log | 0.85 | 200 | 0.7801 | 0.0270 | 0.0010 | 0.0020 | 0.8485 |
No log | 1.28 | 300 | 0.6812 | 0.0635 | 0.0041 | 0.0078 | 0.8490 |
No log | 1.7 | 400 | 0.6205 | 0.2037 | 0.0912 | 0.1260 | 0.8599 |
0.7202 | 2.13 | 500 | 0.5414 | 0.2296 | 0.1285 | 0.1648 | 0.8682 |
0.7202 | 2.55 | 600 | 0.4841 | 0.3139 | 0.2010 | 0.2451 | 0.8769 |
0.7202 | 2.98 | 700 | 0.4284 | 0.3782 | 0.2477 | 0.2993 | 0.8931 |
0.7202 | 3.4 | 800 | 0.3919 | 0.4783 | 0.3762 | 0.4211 | 0.9028 |
0.7202 | 3.83 | 900 | 0.3352 | 0.5749 | 0.4891 | 0.5286 | 0.9223 |
0.367 | 4.26 | 1000 | 0.3130 | 0.5913 | 0.5368 | 0.5627 | 0.9300 |
0.367 | 4.68 | 1100 | 0.2665 | 0.6218 | 0.5979 | 0.6096 | 0.9358 |
0.367 | 5.11 | 1200 | 0.2553 | 0.6336 | 0.6218 | 0.6276 | 0.9398 |
0.367 | 5.53 | 1300 | 0.2521 | 0.6391 | 0.6570 | 0.6479 | 0.9376 |
0.367 | 5.96 | 1400 | 0.2140 | 0.6719 | 0.6684 | 0.6701 | 0.9474 |
0.197 | 6.38 | 1500 | 0.2143 | 0.6889 | 0.7181 | 0.7032 | 0.9497 |
0.197 | 6.81 | 1600 | 0.1994 | 0.7202 | 0.7202 | 0.7202 | 0.9528 |
0.197 | 7.23 | 1700 | 0.2078 | 0.6657 | 0.7202 | 0.6919 | 0.9473 |
0.197 | 7.66 | 1800 | 0.1871 | 0.7357 | 0.7440 | 0.7398 | 0.9562 |
0.197 | 8.09 | 1900 | 0.1904 | 0.7024 | 0.7606 | 0.7303 | 0.9533 |
0.1183 | 8.51 | 2000 | 0.1770 | 0.7398 | 0.7689 | 0.7541 | 0.9582 |
0.1183 | 8.94 | 2100 | 0.1684 | 0.7485 | 0.7710 | 0.7596 | 0.9590 |
0.1183 | 9.36 | 2200 | 0.1729 | 0.7412 | 0.7896 | 0.7647 | 0.9590 |
0.1183 | 9.79 | 2300 | 0.1610 | 0.765 | 0.7927 | 0.7786 | 0.9612 |
0.1183 | 10.21 | 2400 | 0.1570 | 0.7696 | 0.7927 | 0.7810 | 0.9635 |
0.0776 | 10.64 | 2500 | 0.1646 | 0.7854 | 0.8041 | 0.7947 | 0.9647 |
0.0776 | 11.06 | 2600 | 0.1605 | 0.7702 | 0.8197 | 0.7942 | 0.9659 |
0.0776 | 11.49 | 2700 | 0.1575 | 0.7856 | 0.8280 | 0.8063 | 0.9655 |
0.0776 | 11.91 | 2800 | 0.1566 | 0.7777 | 0.8228 | 0.7996 | 0.9665 |
0.0776 | 12.34 | 2900 | 0.1500 | 0.7840 | 0.8238 | 0.8034 | 0.9673 |
0.0586 | 12.77 | 3000 | 0.1577 | 0.7879 | 0.8238 | 0.8055 | 0.9686 |
0.0586 | 13.19 | 3100 | 0.1514 | 0.8100 | 0.8259 | 0.8179 | 0.9698 |
0.0586 | 13.62 | 3200 | 0.1597 | 0.7864 | 0.8394 | 0.8120 | 0.9679 |
0.0586 | 14.04 | 3300 | 0.1492 | 0.8118 | 0.8404 | 0.8259 | 0.9711 |
0.0586 | 14.47 | 3400 | 0.1496 | 0.8014 | 0.8404 | 0.8204 | 0.9700 |
0.0465 | 14.89 | 3500 | 0.1508 | 0.8061 | 0.8446 | 0.8249 | 0.9703 |
0.0465 | 15.32 | 3600 | 0.1539 | 0.8055 | 0.8497 | 0.8270 | 0.9697 |
0.0465 | 15.74 | 3700 | 0.1537 | 0.8073 | 0.8508 | 0.8285 | 0.9700 |
0.0465 | 16.17 | 3800 | 0.1505 | 0.8187 | 0.8518 | 0.8349 | 0.9716 |
0.0465 | 16.6 | 3900 | 0.1518 | 0.8158 | 0.8539 | 0.8344 | 0.9717 |
0.0399 | 17.02 | 4000 | 0.1519 | 0.8149 | 0.8528 | 0.8334 | 0.9717 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3