<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
rhenus_v3.4
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.1510
- Precision: 0.8351
- Recall: 0.8767
- F1: 0.8554
- Accuracy: 0.9763
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 6000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.43 | 100 | 0.1573 | 0.7621 | 0.8332 | 0.7960 | 0.9633 |
No log | 0.85 | 200 | 0.1619 | 0.8087 | 0.8280 | 0.8182 | 0.9682 |
No log | 1.28 | 300 | 0.1650 | 0.7720 | 0.8280 | 0.799 | 0.9652 |
No log | 1.7 | 400 | 0.1498 | 0.7973 | 0.8518 | 0.8236 | 0.9693 |
0.0484 | 2.13 | 500 | 0.1508 | 0.8059 | 0.8518 | 0.8282 | 0.9690 |
0.0484 | 2.55 | 600 | 0.1542 | 0.8006 | 0.8487 | 0.8239 | 0.9679 |
0.0484 | 2.98 | 700 | 0.1660 | 0.7750 | 0.8528 | 0.8120 | 0.9657 |
0.0484 | 3.4 | 800 | 0.1644 | 0.7644 | 0.8642 | 0.8113 | 0.9649 |
0.0484 | 3.83 | 900 | 0.1723 | 0.7577 | 0.8394 | 0.7965 | 0.9630 |
0.0322 | 4.26 | 1000 | 0.1759 | 0.8153 | 0.8373 | 0.8262 | 0.9692 |
0.0322 | 4.68 | 1100 | 0.1610 | 0.7893 | 0.8539 | 0.8203 | 0.9689 |
0.0322 | 5.11 | 1200 | 0.1680 | 0.8107 | 0.8301 | 0.8203 | 0.9690 |
0.0322 | 5.53 | 1300 | 0.1512 | 0.7955 | 0.8425 | 0.8183 | 0.9692 |
0.0322 | 5.96 | 1400 | 0.1699 | 0.7597 | 0.8549 | 0.8045 | 0.9639 |
0.024 | 6.38 | 1500 | 0.1574 | 0.8165 | 0.8622 | 0.8387 | 0.9701 |
0.024 | 6.81 | 1600 | 0.1466 | 0.8236 | 0.8518 | 0.8375 | 0.9735 |
0.024 | 7.23 | 1700 | 0.1487 | 0.8 | 0.8539 | 0.8261 | 0.9709 |
0.024 | 7.66 | 1800 | 0.1453 | 0.8213 | 0.8570 | 0.8387 | 0.9709 |
0.024 | 8.09 | 1900 | 0.1538 | 0.8186 | 0.8653 | 0.8413 | 0.9720 |
0.0177 | 8.51 | 2000 | 0.1562 | 0.8035 | 0.8642 | 0.8328 | 0.9709 |
0.0177 | 8.94 | 2100 | 0.1645 | 0.8099 | 0.8518 | 0.8303 | 0.9695 |
0.0177 | 9.36 | 2200 | 0.1467 | 0.8148 | 0.8663 | 0.8398 | 0.9719 |
0.0177 | 9.79 | 2300 | 0.1504 | 0.8418 | 0.8601 | 0.8508 | 0.9754 |
0.0177 | 10.21 | 2400 | 0.1622 | 0.8402 | 0.8394 | 0.8398 | 0.9719 |
0.0118 | 10.64 | 2500 | 0.1343 | 0.8465 | 0.8746 | 0.8603 | 0.9757 |
0.0118 | 11.06 | 2600 | 0.1540 | 0.8328 | 0.8570 | 0.8447 | 0.9724 |
0.0118 | 11.49 | 2700 | 0.1592 | 0.8206 | 0.8487 | 0.8344 | 0.9714 |
0.0118 | 11.91 | 2800 | 0.1479 | 0.8365 | 0.8746 | 0.8551 | 0.9743 |
0.0118 | 12.34 | 2900 | 0.1682 | 0.8087 | 0.8715 | 0.8389 | 0.9714 |
0.0097 | 12.77 | 3000 | 0.1519 | 0.8046 | 0.8663 | 0.8343 | 0.9724 |
0.0097 | 13.19 | 3100 | 0.1486 | 0.8427 | 0.8715 | 0.8569 | 0.9744 |
0.0097 | 13.62 | 3200 | 0.1535 | 0.8240 | 0.8684 | 0.8456 | 0.9735 |
0.0097 | 14.04 | 3300 | 0.1463 | 0.8302 | 0.8715 | 0.8504 | 0.9743 |
0.0097 | 14.47 | 3400 | 0.1541 | 0.8162 | 0.8653 | 0.8400 | 0.9714 |
0.0074 | 14.89 | 3500 | 0.1668 | 0.8126 | 0.8674 | 0.8391 | 0.9719 |
0.0074 | 15.32 | 3600 | 0.1652 | 0.8291 | 0.8549 | 0.8418 | 0.9720 |
0.0074 | 15.74 | 3700 | 0.1698 | 0.8234 | 0.8601 | 0.8414 | 0.9720 |
0.0074 | 16.17 | 3800 | 0.1620 | 0.8193 | 0.8788 | 0.848 | 0.9735 |
0.0074 | 16.6 | 3900 | 0.1608 | 0.8459 | 0.8591 | 0.8524 | 0.9743 |
0.0063 | 17.02 | 4000 | 0.1619 | 0.8227 | 0.8653 | 0.8434 | 0.9740 |
0.0063 | 17.45 | 4100 | 0.1530 | 0.8229 | 0.8715 | 0.8465 | 0.9743 |
0.0063 | 17.87 | 4200 | 0.1563 | 0.8287 | 0.8725 | 0.8501 | 0.9738 |
0.0063 | 18.3 | 4300 | 0.1594 | 0.8091 | 0.8694 | 0.8382 | 0.9730 |
0.0063 | 18.72 | 4400 | 0.1569 | 0.8251 | 0.8705 | 0.8472 | 0.9746 |
0.0049 | 19.15 | 4500 | 0.1473 | 0.8664 | 0.8736 | 0.8700 | 0.9781 |
0.0049 | 19.57 | 4600 | 0.1597 | 0.8167 | 0.8725 | 0.8437 | 0.9725 |
0.0049 | 20.0 | 4700 | 0.1552 | 0.8223 | 0.8725 | 0.8467 | 0.9740 |
0.0049 | 20.43 | 4800 | 0.1614 | 0.8400 | 0.8756 | 0.8574 | 0.9749 |
0.0049 | 20.85 | 4900 | 0.1519 | 0.8386 | 0.8725 | 0.8553 | 0.9759 |
0.0039 | 21.28 | 5000 | 0.1582 | 0.8273 | 0.8736 | 0.8498 | 0.9738 |
0.0039 | 21.7 | 5100 | 0.1618 | 0.8200 | 0.8736 | 0.8460 | 0.9744 |
0.0039 | 22.13 | 5200 | 0.1504 | 0.8309 | 0.8756 | 0.8527 | 0.9752 |
0.0039 | 22.55 | 5300 | 0.1512 | 0.8358 | 0.8756 | 0.8553 | 0.9755 |
0.0039 | 22.98 | 5400 | 0.1525 | 0.8231 | 0.8777 | 0.8495 | 0.9749 |
0.0029 | 23.4 | 5500 | 0.1568 | 0.8328 | 0.8777 | 0.8547 | 0.9746 |
0.0029 | 23.83 | 5600 | 0.1495 | 0.8408 | 0.8808 | 0.8603 | 0.9767 |
0.0029 | 24.26 | 5700 | 0.1510 | 0.8371 | 0.8788 | 0.8574 | 0.9763 |
0.0029 | 24.68 | 5800 | 0.1548 | 0.8278 | 0.8767 | 0.8515 | 0.9754 |
0.0029 | 25.11 | 5900 | 0.1524 | 0.8319 | 0.8767 | 0.8537 | 0.9759 |
0.0027 | 25.53 | 6000 | 0.1510 | 0.8351 | 0.8767 | 0.8554 | 0.9763 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3