Model card for nasnetalarge.tf_in1k
A NasNet image classification model. Trained on ImageNet-1k by paper authors. Ported from Tensorflow via Cadene's pretrained-models.pytorch.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 88.8
- GMACs: 23.9
- Activations (M): 90.6
- Image size: 331 x 331
- Papers:
- Learning Transferable Architectures for Scalable Image Recognition: https://arxiv.org/abs/1707.07012
- Original:
- https://github.com/tensorflow/models
- https://github.com/Cadene/pretrained-models.pytorch
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('nasnetalarge.tf_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'nasnetalarge.tf_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 96, 165, 165])
# torch.Size([1, 168, 83, 83])
# torch.Size([1, 1008, 42, 42])
# torch.Size([1, 2016, 21, 21])
# torch.Size([1, 4032, 11, 11])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'nasnetalarge.tf_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 4032, 11, 11) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@misc{zoph2018learning,
title={Learning Transferable Architectures for Scalable Image Recognition},
author={Barret Zoph and Vijay Vasudevan and Jonathon Shlens and Quoc V. Le},
year={2018},
eprint={1707.07012},
archivePrefix={arXiv},
primaryClass={cs.CV}
}