Model card for visformer_small.in1k
A Visformer image classification model. Trained on ImageNet-1k by https://github.com/hzhang57 and https://github.com/developer0hye.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 40.2
- GMACs: 4.9
- Activations (M): 11.4
- Image size: 224 x 224
- Papers:
- Visformer: The Vision-friendly Transformer: https://arxiv.org/abs/2104.12533
- Dataset: ImageNet-1k
- Original: https://github.com/danczs/Visformer
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('visformer_small.in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'visformer_small.in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 768, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@inproceedings{chen2021visformer,
title={Visformer: The vision-friendly transformer},
author={Chen, Zhengsu and Xie, Lingxi and Niu, Jianwei and Liu, Xuefeng and Wei, Longhui and Tian, Qi},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={589--598},
year={2021}
}