<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
SADAF_test3
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0061
- Macro F1: 0.7951
- Precision: 0.7874
- Recall: 0.8073
- Kappa: 0.7169
- Accuracy: 0.8073
Model description
Relation identification for explicit dataset
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 25
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | Kappa | Accuracy |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 76 | 1.0304 | 0.6632 | 0.6222 | 0.7436 | 0.5881 | 0.7436 |
No log | 2.0 | 152 | 0.8135 | 0.7191 | 0.6933 | 0.7800 | 0.6519 | 0.7800 |
No log | 3.0 | 228 | 0.7417 | 0.7715 | 0.7663 | 0.8007 | 0.6973 | 0.8007 |
No log | 4.0 | 304 | 0.7449 | 0.7807 | 0.7704 | 0.7957 | 0.6999 | 0.7957 |
No log | 5.0 | 380 | 0.7447 | 0.7874 | 0.7770 | 0.8089 | 0.7128 | 0.8089 |
No log | 6.0 | 456 | 0.8034 | 0.7654 | 0.7599 | 0.7750 | 0.6761 | 0.7750 |
0.7186 | 7.0 | 532 | 0.8874 | 0.7672 | 0.7669 | 0.7750 | 0.6785 | 0.7750 |
0.7186 | 8.0 | 608 | 0.8737 | 0.7830 | 0.7729 | 0.7974 | 0.7030 | 0.7974 |
0.7186 | 9.0 | 684 | 0.8964 | 0.7785 | 0.7675 | 0.7924 | 0.6978 | 0.7924 |
0.7186 | 10.0 | 760 | 0.9368 | 0.7863 | 0.7761 | 0.7998 | 0.7071 | 0.7998 |
0.7186 | 11.0 | 836 | 0.9717 | 0.7897 | 0.7803 | 0.8040 | 0.7119 | 0.8040 |
0.7186 | 12.0 | 912 | 0.9876 | 0.7883 | 0.7810 | 0.8007 | 0.7086 | 0.8007 |
0.7186 | 13.0 | 988 | 0.9893 | 0.7893 | 0.7812 | 0.8023 | 0.7106 | 0.8023 |
0.1542 | 14.0 | 1064 | 0.9999 | 0.7917 | 0.7841 | 0.8023 | 0.7109 | 0.8023 |
0.1542 | 15.0 | 1140 | 1.0061 | 0.7951 | 0.7874 | 0.8073 | 0.7169 | 0.8073 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Tokenizers 0.13.3