<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_manifesti_v5.5
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0275
- Precision: 0.9266
- Recall: 0.9524
- F1: 0.9393
- Accuracy: 0.9936
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.47 | 100 | 0.1417 | 0.7345 | 0.8005 | 0.7661 | 0.9660 |
No log | 0.94 | 200 | 0.0495 | 0.8930 | 0.9218 | 0.9072 | 0.9884 |
No log | 1.42 | 300 | 0.0597 | 0.8416 | 0.9263 | 0.8820 | 0.9812 |
No log | 1.89 | 400 | 0.0368 | 0.9109 | 0.9551 | 0.9325 | 0.9912 |
0.137 | 2.36 | 500 | 0.0357 | 0.9051 | 0.9515 | 0.9277 | 0.9901 |
0.137 | 2.83 | 600 | 0.0297 | 0.9245 | 0.9578 | 0.9409 | 0.9926 |
0.137 | 3.3 | 700 | 0.0294 | 0.9157 | 0.9560 | 0.9354 | 0.9918 |
0.137 | 3.77 | 800 | 0.0314 | 0.9190 | 0.9587 | 0.9384 | 0.9922 |
0.137 | 4.25 | 900 | 0.0252 | 0.9348 | 0.9659 | 0.9501 | 0.9939 |
0.0226 | 4.72 | 1000 | 0.0300 | 0.9307 | 0.9659 | 0.9480 | 0.9934 |
0.0226 | 5.19 | 1100 | 0.0295 | 0.9213 | 0.9569 | 0.9387 | 0.9926 |
0.0226 | 5.66 | 1200 | 0.0279 | 0.9283 | 0.9650 | 0.9463 | 0.9934 |
0.0226 | 6.13 | 1300 | 0.0258 | 0.9234 | 0.9641 | 0.9433 | 0.9932 |
0.0226 | 6.6 | 1400 | 0.0255 | 0.9275 | 0.9650 | 0.9458 | 0.9939 |
0.0161 | 7.08 | 1500 | 0.0319 | 0.9257 | 0.9623 | 0.9436 | 0.9932 |
0.0161 | 7.55 | 1600 | 0.0235 | 0.9331 | 0.9650 | 0.9488 | 0.9944 |
0.0161 | 8.02 | 1700 | 0.0308 | 0.9198 | 0.9587 | 0.9388 | 0.9925 |
0.0161 | 8.49 | 1800 | 0.0292 | 0.9265 | 0.9632 | 0.9445 | 0.9930 |
0.0161 | 8.96 | 1900 | 0.0251 | 0.9282 | 0.9641 | 0.9458 | 0.9934 |
0.0106 | 9.43 | 2000 | 0.0223 | 0.9229 | 0.9578 | 0.9400 | 0.9932 |
0.0106 | 9.91 | 2100 | 0.0253 | 0.9223 | 0.9596 | 0.9406 | 0.9930 |
0.0106 | 10.38 | 2200 | 0.0299 | 0.9196 | 0.9560 | 0.9374 | 0.9929 |
0.0106 | 10.85 | 2300 | 0.0240 | 0.9235 | 0.9542 | 0.9386 | 0.9934 |
0.0106 | 11.32 | 2400 | 0.0289 | 0.9166 | 0.9479 | 0.9320 | 0.9922 |
0.0079 | 11.79 | 2500 | 0.0236 | 0.9196 | 0.9452 | 0.9322 | 0.9923 |
0.0079 | 12.26 | 2600 | 0.0271 | 0.9234 | 0.9533 | 0.9381 | 0.9930 |
0.0079 | 12.74 | 2700 | 0.0267 | 0.9337 | 0.9614 | 0.9473 | 0.9943 |
0.0079 | 13.21 | 2800 | 0.0277 | 0.9337 | 0.9614 | 0.9473 | 0.9943 |
0.0079 | 13.68 | 2900 | 0.0279 | 0.9350 | 0.9686 | 0.9515 | 0.9946 |
0.0058 | 14.15 | 3000 | 0.0282 | 0.9240 | 0.9497 | 0.9366 | 0.9925 |
0.0058 | 14.62 | 3100 | 0.0281 | 0.9260 | 0.9551 | 0.9403 | 0.9937 |
0.0058 | 15.09 | 3200 | 0.0258 | 0.9248 | 0.9506 | 0.9375 | 0.9934 |
0.0058 | 15.57 | 3300 | 0.0253 | 0.9300 | 0.9551 | 0.9424 | 0.9940 |
0.0058 | 16.04 | 3400 | 0.0271 | 0.9248 | 0.9506 | 0.9375 | 0.9934 |
0.0037 | 16.51 | 3500 | 0.0275 | 0.9266 | 0.9524 | 0.9393 | 0.9936 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3