<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_manifesti_v5.6
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0271
- Precision: 0.9305
- Recall: 0.9623
- F1: 0.9461
- Accuracy: 0.9934
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.47 | 100 | 0.1846 | 0.6553 | 0.7448 | 0.6972 | 0.9597 |
No log | 0.93 | 200 | 0.0547 | 0.8780 | 0.9182 | 0.8977 | 0.9865 |
No log | 1.4 | 300 | 0.0442 | 0.9007 | 0.9371 | 0.9185 | 0.9895 |
No log | 1.87 | 400 | 0.0446 | 0.8823 | 0.9362 | 0.9085 | 0.9886 |
0.1459 | 2.34 | 500 | 0.0360 | 0.8995 | 0.9488 | 0.9235 | 0.9908 |
0.1459 | 2.8 | 600 | 0.0315 | 0.9205 | 0.9569 | 0.9383 | 0.9923 |
0.1459 | 3.27 | 700 | 0.0309 | 0.9316 | 0.9668 | 0.9489 | 0.9937 |
0.1459 | 3.74 | 800 | 0.0259 | 0.9121 | 0.9506 | 0.9309 | 0.9918 |
0.1459 | 4.21 | 900 | 0.0267 | 0.9264 | 0.9614 | 0.9436 | 0.9941 |
0.0247 | 4.67 | 1000 | 0.0272 | 0.9282 | 0.9641 | 0.9458 | 0.9937 |
0.0247 | 5.14 | 1100 | 0.0221 | 0.9355 | 0.9641 | 0.9496 | 0.9947 |
0.0247 | 5.61 | 1200 | 0.0236 | 0.9494 | 0.9614 | 0.9554 | 0.9946 |
0.0247 | 6.07 | 1300 | 0.0331 | 0.9050 | 0.9416 | 0.9229 | 0.9898 |
0.0247 | 6.54 | 1400 | 0.0199 | 0.9278 | 0.9587 | 0.9430 | 0.9936 |
0.016 | 7.01 | 1500 | 0.0180 | 0.9465 | 0.9533 | 0.9499 | 0.9947 |
0.016 | 7.48 | 1600 | 0.0236 | 0.9437 | 0.9641 | 0.9538 | 0.9951 |
0.016 | 7.94 | 1700 | 0.0220 | 0.9359 | 0.9704 | 0.9528 | 0.9946 |
0.016 | 8.41 | 1800 | 0.0271 | 0.9185 | 0.9623 | 0.9399 | 0.9923 |
0.016 | 8.88 | 1900 | 0.0315 | 0.9294 | 0.9695 | 0.9490 | 0.9936 |
0.011 | 9.35 | 2000 | 0.0305 | 0.9186 | 0.9632 | 0.9404 | 0.9926 |
0.011 | 9.81 | 2100 | 0.0286 | 0.9271 | 0.9596 | 0.9430 | 0.9930 |
0.011 | 10.28 | 2200 | 0.0242 | 0.9296 | 0.9497 | 0.9396 | 0.9928 |
0.011 | 10.75 | 2300 | 0.0316 | 0.9183 | 0.9488 | 0.9333 | 0.9908 |
0.011 | 11.21 | 2400 | 0.0293 | 0.9311 | 0.9596 | 0.9451 | 0.9932 |
0.0069 | 11.68 | 2500 | 0.0285 | 0.9297 | 0.9632 | 0.9462 | 0.9932 |
0.0069 | 12.15 | 2600 | 0.0309 | 0.9114 | 0.9524 | 0.9315 | 0.9918 |
0.0069 | 12.62 | 2700 | 0.0290 | 0.9206 | 0.9587 | 0.9393 | 0.9928 |
0.0069 | 13.08 | 2800 | 0.0270 | 0.9323 | 0.9650 | 0.9483 | 0.9937 |
0.0069 | 13.55 | 2900 | 0.0249 | 0.9363 | 0.9641 | 0.9500 | 0.9941 |
0.0059 | 14.02 | 3000 | 0.0273 | 0.9297 | 0.9632 | 0.9462 | 0.9933 |
0.0059 | 14.49 | 3100 | 0.0271 | 0.9278 | 0.9587 | 0.9430 | 0.9930 |
0.0059 | 14.95 | 3200 | 0.0297 | 0.9248 | 0.9614 | 0.9427 | 0.9928 |
0.0059 | 15.42 | 3300 | 0.0275 | 0.9305 | 0.9623 | 0.9461 | 0.9933 |
0.0059 | 15.89 | 3400 | 0.0275 | 0.9296 | 0.9605 | 0.9448 | 0.9933 |
0.0047 | 16.36 | 3500 | 0.0271 | 0.9305 | 0.9623 | 0.9461 | 0.9934 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3