Model Card for Model ID
Model description
odiagenAI-model-v1 is based on Llama-7b and finetuned with 171k Odia instruction set. The instruction set is translated data from open-source resources, resulting in good Odia instruction understanding and response generation capabilities.
The code of Odia data generation and other detailed information can be found in our Github project repository: https://github.com/OdiaGenAI/GenerativeAI_and_LLM_Odia. This repo contains a low-rank adapter for LLaMA-7b fit on the Stanford Alpaca dataset.
Training hyper-parameters
Parameter | Value |
---|---|
Batch size | 128 |
Learning rate | 3e-4 |
Epochs | 3 |
Cutoff length | 256 |
Weight_decay | 0.001 |
Warmup_rate | 0.1 |
LR_scheduler | linear |
Lora r | 16 |
Lora target modules | (q_proj, k_proj, v_proj, o_proj) |
Model can be easily loaded with AutoModelForCausalLM.
# import torch
from peft import PeftModel
# from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
import torch
# from peft import PeftModel
import transformers
import gradio as gr
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
BASE_MODEL = "decapoda-research/llama-7b-hf"
LORA_WEIGHTS = "OdiaGenAI/odiagenAI-model-v1"
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
def generate_prompt(instruction, input=None):
if input:
return f"""### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"""
else:
return f"""### Instruction:\n{instruction}\n\n### Response:\n"""
if device != "cpu":
model.half()
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
prompt = generate_prompt(instruction, input)
print(prompt)
inputs = tokenizer(prompt, return_tensors="pt")
print(inputs)
input_ids = inputs["input_ids"].to(device)
print(input_ids)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
print(generation_output)
s = generation_output.sequences[0]
print(s)
output = tokenizer.decode(s)
print(output)
return output.split("### Response:")[1].strip()
Instructions for running it can be found at https://github.com/OdiaGenAI/GenerativeAI_and_LLM_Odia.
Licensing Information
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Citation Information
If you find this helpful repository, please consider giving 👏 and citing:
@misc{OdiaGenAI,
author = {Shantipriya Parida and Sambit Sekhar and Subhadarshi Panda and Soumendra Kumar Sahoo and Swateek Jena and Abhijeet Parida and Arghyadeep Sen and Satya Ranjan Dash and Deepak Kumar Pradhan},
title = {OdiaGenAI: Generative AI and LLM Initiative for the Odia Language},
year = {2023},
publisher = {Hugging Face},
journal = {Hugging Face repository},
howpublished = {\url{https://huggingface.co/OdiaGenAI}},
}
Contributions
- Shantipriya Parida
- Sambit Sekhar