generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

bert-base-uncased

This model is a fine-tuned version of on the jigsaw dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Precision Micro Recall Micro F1 Micro F2 Micro Precision Macro Recall Macro F1 Macro F2 Macro Overall Precision Overall Recall Overall F1 Overall F2 Overall Accuracy Matthews Corrcoef Aucroc Macro Aucroc Micro Accuracy Toxic F1 Toxic Accuracy Severe Toxic F1 Severe Toxic Accuracy Obscene F1 Obscene Accuracy Threat F1 Threat Accuracy Insult F1 Insult Accuracy Identity Hate F1 Identity Hate
0.0433 1.0 2659 0.0423 0.7607 0.7798 0.7702 0.7759 0.6398 0.5561 0.5585 0.5535 0.9832 0.9832 0.9832 0.9832 0.9832 0.7615 0.9887 0.9908 0.9671 0.8211 0.9878 0.4354 0.9805 0.8265 0.9974 0.2243 0.9746 0.7602 0.9918 0.2834
0.0366 2.0 5318 0.0393 0.7758 0.7858 0.7808 0.7838 0.6349 0.5972 0.6105 0.6015 0.9841 0.9841 0.9841 0.9841 0.9841 0.7725 0.9897 0.9920 0.9678 0.8295 0.9899 0.3313 0.9816 0.8338 0.9974 0.4545 0.9763 0.7662 0.9914 0.4480
0.0305 3.0 7977 0.0399 0.7608 0.8186 0.7887 0.8064 0.6621 0.6856 0.6715 0.6794 0.9842 0.9842 0.9842 0.9842 0.9842 0.7810 0.9897 0.9919 0.9662 0.8272 0.9892 0.4772 0.9815 0.8347 0.9977 0.5629 0.9772 0.7740 0.9931 0.5528
0.0263 4.0 10636 0.0435 0.7333 0.8336 0.7803 0.8114 0.6395 0.7039 0.6687 0.6890 0.9830 0.9830 0.9830 0.9830 0.9830 0.7732 0.9897 0.9912 0.9608 0.8083 0.9898 0.4791 0.9812 0.8319 0.9972 0.5368 0.9756 0.7700 0.9935 0.5861
0.0218 5.0 13295 0.0456 0.7480 0.8108 0.7781 0.7974 0.6661 0.6720 0.6662 0.6691 0.9833 0.9833 0.9833 0.9833 0.9833 0.7701 0.9890 0.9907 0.9612 0.8071 0.9894 0.4642 0.9823 0.8354 0.9977 0.5325 0.9754 0.7613 0.9936 0.5968

Framework versions