<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
Jira20ALBERT_Unbalance
This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3274
- Train Accuracy: 0.8741
- Validation Loss: 0.2857
- Validation Accuracy: 0.9085
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': 0.001, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.3363 | 0.8730 | 0.3001 | 0.8927 | 0 |
0.3012 | 0.8846 | 0.2556 | 0.9338 | 1 |
0.3198 | 0.8835 | 0.2582 | 0.9338 | 2 |
0.3755 | 0.8741 | 0.2842 | 0.9338 | 3 |
0.3274 | 0.8741 | 0.2857 | 0.9085 | 4 |
Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3