<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
MariaDB15ALBERT_Unbalance
This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1094
- Train Accuracy: 0.9598
- Validation Loss: 0.2193
- Validation Accuracy: 0.9573
- Epoch: 5
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': 0.001, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.2648 | 0.9322 | 0.1947 | 0.9523 | 0 |
0.2120 | 0.9280 | 0.1783 | 0.9598 | 1 |
0.2132 | 0.9322 | 0.1581 | 0.9598 | 2 |
0.1748 | 0.9305 | 0.1930 | 0.9573 | 3 |
0.1502 | 0.9448 | 0.2133 | 0.9598 | 4 |
0.1094 | 0.9598 | 0.2193 | 0.9573 | 5 |
Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3