llm-rs ggml

GGML converted versions of BigScience's BloomZ models

Description

We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages.

Intended use

We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "Translate to English: Je t’aime.", the model will most likely answer "I love you.". Some prompt ideas from our paper:

Converted Models

Name Based on Type Container GGML Version
bloomz-1b1-f16.bin bigscience/bloomz-1b1 F16 GGML V3
bloomz-1b1-q4_0.bin bigscience/bloomz-1b1 Q4_0 GGML V3
bloomz-1b1-q4_0-ggjt.bin bigscience/bloomz-1b1 Q4_0 GGJT V3
bloomz-1b1-q5_1.bin bigscience/bloomz-1b1 Q5_1 GGML V3
bloomz-1b1-q5_1-ggjt.bin bigscience/bloomz-1b1 Q5_1 GGJT V3
bloomz-1b7-f16.bin bigscience/bloomz-1b7 F16 GGML V3
bloomz-1b7-q4_0.bin bigscience/bloomz-1b7 Q4_0 GGML V3
bloomz-1b7-q4_0-ggjt.bin bigscience/bloomz-1b7 Q4_0 GGJT V3
bloomz-1b7-q5_1.bin bigscience/bloomz-1b7 Q5_1 GGML V3
bloomz-1b7-q5_1-ggjt.bin bigscience/bloomz-1b7 Q5_1 GGJT V3
bloomz-3b-f16.bin bigscience/bloomz-3b F16 GGML V3
bloomz-3b-q4_0.bin bigscience/bloomz-3b Q4_0 GGML V3
bloomz-3b-q4_0-ggjt.bin bigscience/bloomz-3b Q4_0 GGJT V3
bloomz-3b-q5_1.bin bigscience/bloomz-3b Q5_1 GGML V3
bloomz-3b-q5_1-ggjt.bin bigscience/bloomz-3b Q5_1 GGJT V3
bloomz-560m-f16.bin bigscience/bloomz-560m F16 GGML V3
bloomz-560m-q4_0.bin bigscience/bloomz-560m Q4_0 GGML V3
bloomz-560m-q4_0-ggjt.bin bigscience/bloomz-560m Q4_0 GGJT V3
bloomz-560m-q5_1.bin bigscience/bloomz-560m Q5_1 GGML V3
bloomz-560m-q5_1-ggjt.bin bigscience/bloomz-560m Q5_1 GGJT V3

Usage

Python via llm-rs:

Installation

Via pip: pip install llm-rs

Run inference

from llm_rs import AutoModel

#Load the model, define any model you like from the list above as the `model_file`
model = AutoModel.from_pretrained("rustformers/bloomz-ggml",model_file="bloomz-3b-q4_0-ggjt.bin")

#Generate
print(model.generate("The meaning of life is"))

Rust via Rustformers/llm:

Installation

git clone --recurse-submodules https://github.com/rustformers/llm.git
cd llm
cargo build --release

Run inference

cargo run --release -- bloom infer -m path/to/model.bin  -p "Tell me how cool the Rust programming language is:"