<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
tripadvisor-sentiment-model-test
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
-
Loss: 0.6085
-
Accuracy: 0.784
-
Macro F1: 0.7543
-
Macro Precision: 0.7539
-
Macro Recall: 0.7550
-
Weighted F1: 0.7857
-
Weighted Precision: 0.7876
-
Weighted Recall: 0.784
-
Classification Report: precision recall f1-score support
0 0.84 0.84 0.84 213 1 0.87 0.85 0.86 269 2 0.55 0.57 0.56 143
accuracy 0.78 625 macro avg 0.75 0.76 0.75 625 weighted avg 0.79 0.78 0.79 625
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | Macro Precision | Macro Recall | Weighted F1 | Weighted Precision | Weighted Recall | Classification Report |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5896 | 1.0 | 313 | 0.6278 | 0.7392 | 0.6915 | 0.7114 | 0.6883 | 0.7323 | 0.7440 | 0.7392 | precision recall f1-score support |
0 0.88 0.66 0.76 213
1 0.78 0.96 0.86 269
2 0.47 0.45 0.46 143
accuracy 0.74 625
macro avg 0.71 0.69 0.69 625 weighted avg 0.74 0.74 0.73 625 | | 0.4981 | 2.0 | 626 | 0.6304 | 0.736 | 0.6969 | 0.7022 | 0.7044 | 0.7348 | 0.7484 | 0.736 | precision recall f1-score support
0 0.74 0.93 0.83 213
1 0.91 0.74 0.81 269
2 0.45 0.45 0.45 143
accuracy 0.74 625
macro avg 0.70 0.70 0.70 625 weighted avg 0.75 0.74 0.73 625 | | 0.356 | 3.0 | 939 | 0.6085 | 0.784 | 0.7543 | 0.7539 | 0.7550 | 0.7857 | 0.7876 | 0.784 | precision recall f1-score support
0 0.84 0.84 0.84 213
1 0.87 0.85 0.86 269
2 0.55 0.57 0.56 143
accuracy 0.78 625
macro avg 0.75 0.76 0.75 625 weighted avg 0.79 0.78 0.79 625 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3