ja gpt_neox text-generation lm nlp

japanese-gpt-neox-3.6b-instruction-sft-v2

rinna-icon

Overview

This repository provides a Japanese GPT-NeoX model of 3.6 billion parameters. The model is based on rinna/japanese-gpt-neox-3.6b and has been finetuned to serve as an instruction-following conversational agent.

This model slightly differs from the previous SFT model rinna/japanese-gpt-neox-3.6b-instruction-sft, where a different data split is used for training.

I/O Format

A special format has been adopted to construct inputs.

Following is an example to construct an input from a conversation.

prompt = [
    {
        "speaker": "ユーザー",
        "text": "コンタクトレンズを慣れるにはどうすればよいですか?"
    },
    {
        "speaker": "システム",
        "text": "これについて具体的に説明していただけますか?何が難しいのでしょうか?"
    },
    {
        "speaker": "ユーザー",
        "text": "目が痛いのです。"
    },
    {
        "speaker": "システム",
        "text": "分かりました、コンタクトレンズをつけると目がかゆくなるということですね。思った以上にレンズを外す必要があるでしょうか?"
    },
    {
        "speaker": "ユーザー",
        "text": "いえ、レンズは外しませんが、目が赤くなるんです。"
    }
]
prompt = [
    f"{uttr['speaker']}: {uttr['text']}"
    for uttr in prompt
]
prompt = "<NL>".join(prompt)
prompt = (
    prompt
    + "<NL>"
    + "システム: "
)
print(prompt)
# "ユーザー: コンタクトレンズを慣れるにはどうすればよいですか?<NL>システム: これについて具体的に説明していただけますか?何が難しいのでしょうか?<NL>ユーザー: 目が痛いのです。<NL>システム: 分かりました、コンタクトレンズをつけると目がかゆくなるということですね。思った以上にレンズを外す必要があるでしょうか?<NL>ユーザー: いえ、レンズは外しませんが、目が赤くなるんです。<NL>システム: "

How to use the model

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft-v2", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft-v2")

if torch.cuda.is_available():
    model = model.to("cuda")

token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        do_sample=True,
        max_new_tokens=128,
        temperature=0.7,
        repetition_penalty=1.1,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
output = output.replace("<NL>", "\n")
print(output)
"""わかりました。まずは、コンタクトレンズを長時間着用することによる目の乾燥を防ぐことができます。また、毎日同じ時間帯にコンタクトレンズを着用してみることもできます。そして、コンタクトレンズが目に合わないような場合は、新しいものを試してみる必要があります。</s>"""

Tokenization

The model uses a sentencepiece-based tokenizer.

Licenese

The MIT license