NewsKoT5

The training data for this T5 model consists of Korean news articles (29GB). However, the performance has not been fine-tuned through the use of small batches and a limited number of training steps, so it may not be fully optimized.

Quick tour

from transformers import AutoTokenizer, T5ForConditionalGeneration
  
tokenizer = AutoTokenizer.from_pretrained("BM-K/NewsKoT5-small")
model = T5ForConditionalGeneration.from_pretrained("BM-K/NewsKoT5-small")

input_ids = tokenizer("한국형발사체 누리호가 실용급 <extra_id_0> 발사체로서 ‘데뷔’를 성공적으로 <extra_id_1>", return_tensors="pt").input_ids
labels = tokenizer("<extra_id_0> 위성 <extra_id_1> 마쳤다 <extra_id_2>", return_tensors="pt").input_ids

outputs = model(input_ids=input_ids,
                labels=labels)

News Summarization Performance (F1-score)

After restoring the model's tokenized output to the original text, Rouge performance was evaluated by comparing it to the reference and hypothesis tokenized using mecab.

#Param rouge-1 rouge-2 rouge-l
pko-t5-small 95M 51.48 33.18 44.96
NewsT5-small 61M 52.15 33.59 45.41
#Param rouge-1 rouge-2 rouge-l
pko-t5-small 95M 53.44 34.03 45.36
NewsT5-small 61M 53.74 34.27 45.52