generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

bert_sm_cv_4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 D-index
0.5342 1.0 1000 0.4182 0.828 0.6117 0.3231 0.4228 1.5811
0.5562 2.0 2000 0.5091 0.825 0.5943 0.3231 0.4186 1.5770
0.5531 3.0 3000 0.6970 0.821 0.5678 0.3436 0.4281 1.5785
0.4464 4.0 4000 0.9186 0.816 0.5495 0.3128 0.3987 1.5615
0.3459 5.0 5000 1.0847 0.815 0.5510 0.2769 0.3686 1.5480
0.2035 6.0 6000 1.2288 0.818 0.5504 0.3641 0.4383 1.5813
0.2029 7.0 7000 1.3880 0.811 0.5395 0.2103 0.3026 1.5198
0.0907 8.0 8000 1.6336 0.824 0.6 0.2923 0.3931 1.5654
0.1161 9.0 9000 1.6379 0.799 0.4821 0.4154 0.4463 1.5729
0.0516 10.0 10000 1.6650 0.812 0.5304 0.3128 0.3935 1.5561
0.0249 11.0 11000 1.8710 0.815 0.5410 0.3385 0.4164 1.5688
0.0097 12.0 12000 1.9980 0.821 0.5741 0.3179 0.4092 1.5700
0.0047 13.0 13000 2.1137 0.821 0.5930 0.2615 0.3630 1.5509
0.0001 14.0 14000 2.1541 0.825 0.5893 0.3385 0.4300 1.5822
0.0038 15.0 15000 2.2491 0.814 0.5338 0.3641 0.4329 1.5760
0.0063 16.0 16000 2.2822 0.818 0.5546 0.3385 0.4204 1.5728
0.0 17.0 17000 2.3280 0.815 0.5373 0.3692 0.4377 1.5790
0.011 18.0 18000 2.3034 0.822 0.5714 0.3487 0.4331 1.5816
0.0 19.0 19000 2.3205 0.822 0.5714 0.3487 0.4331 1.5816
0.0054 20.0 20000 2.3264 0.822 0.5714 0.3487 0.4331 1.5816

Framework versions