generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

bert_sm_gen1_cv_4

This model is a fine-tuned version of wiorz/bert_sm_gen1 on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 D-index
0.962 1.0 1000 0.6663 0.821 0.5930 0.2615 0.3630 1.5509
0.5779 2.0 2000 0.6352 0.818 0.5481 0.3795 0.4485 1.5864
0.4922 3.0 3000 0.9985 0.819 0.6667 0.1436 0.2363 1.5076
0.2595 4.0 4000 1.3708 0.806 0.5062 0.2103 0.2971 1.5130
0.1417 5.0 5000 1.5550 0.811 0.5326 0.2513 0.3415 1.5339
0.1007 6.0 6000 1.8121 0.808 0.5185 0.2154 0.3043 1.5175
0.1046 7.0 7000 1.9016 0.818 0.5657 0.2872 0.3810 1.5556
0.1286 8.0 8000 1.8942 0.815 0.5714 0.2051 0.3019 1.5235
0.108 9.0 9000 1.9444 0.802 0.4895 0.3590 0.4142 1.5581
0.0547 10.0 10000 1.8634 0.802 0.4887 0.3333 0.3963 1.5495
0.0288 11.0 11000 2.0029 0.83 0.6761 0.2462 0.3609 1.5578
0.0185 12.0 12000 2.2107 0.803 0.4926 0.3436 0.4048 1.5543
0.0088 13.0 13000 2.1847 0.817 0.5517 0.3282 0.4116 1.5680
0.0018 14.0 14000 2.3947 0.808 0.5118 0.3333 0.4037 1.5576
0.0152 15.0 15000 2.3443 0.823 0.5957 0.2872 0.3875 1.5623
0.016 16.0 16000 2.3187 0.815 0.5385 0.3590 0.4308 1.5756
0.0 17.0 17000 2.3557 0.817 0.5536 0.3179 0.4039 1.5646
0.0001 18.0 18000 2.4107 0.816 0.5433 0.3538 0.4286 1.5752
0.0 19.0 19000 2.4105 0.82 0.5758 0.2923 0.3878 1.5600
0.0 20.0 20000 2.4140 0.82 0.5758 0.2923 0.3878 1.5600

Framework versions