<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
segformer-b5-finetuned-segments-crop_crack_early-lr6-8
This model is a fine-tuned version of nvidia/mit-b5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1049
- Mean Iou: 0.3975
- Mean Accuracy: 0.6057
- Overall Accuracy: 0.5953
- Accuracy Unlabeled: nan
- Accuracy Crack: 0.5456
- Accuracy Potholes: 0.6658
- Iou Unlabeled: 0.0
- Iou Crack: 0.5283
- Iou Potholes: 0.6641
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Crack | Accuracy Potholes | Iou Unlabeled | Iou Crack | Iou Potholes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3187 | 0.07 | 20 | 0.3997 | 0.0630 | 0.0962 | 0.0920 | nan | 0.0720 | 0.1203 | 0.0 | 0.0707 | 0.1182 |
0.1572 | 0.14 | 40 | 0.1967 | 0.1256 | 0.1920 | 0.1806 | nan | 0.1259 | 0.2582 | 0.0 | 0.1242 | 0.2524 |
0.1316 | 0.21 | 60 | 0.1744 | 0.1255 | 0.2012 | 0.2238 | nan | 0.3322 | 0.0701 | 0.0 | 0.3065 | 0.0701 |
0.1051 | 0.28 | 80 | 0.1538 | 0.1497 | 0.2309 | 0.2448 | nan | 0.3111 | 0.1507 | 0.0 | 0.2985 | 0.1505 |
0.2733 | 0.35 | 100 | 0.1587 | 0.1738 | 0.2751 | 0.2985 | nan | 0.4104 | 0.1397 | 0.0 | 0.3816 | 0.1397 |
0.1544 | 0.42 | 120 | 0.1306 | 0.2941 | 0.4527 | 0.4424 | nan | 0.3930 | 0.5124 | 0.0 | 0.3865 | 0.4957 |
0.2418 | 0.49 | 140 | 0.1322 | 0.2712 | 0.4150 | 0.3977 | nan | 0.3150 | 0.5150 | 0.0 | 0.3115 | 0.5020 |
0.1182 | 0.56 | 160 | 0.1189 | 0.2774 | 0.4224 | 0.4091 | nan | 0.3453 | 0.4996 | 0.0 | 0.3403 | 0.4920 |
0.1287 | 0.63 | 180 | 0.1263 | 0.2728 | 0.4170 | 0.4111 | nan | 0.3828 | 0.4512 | 0.0 | 0.3675 | 0.4508 |
0.0895 | 0.7 | 200 | 0.1285 | 0.2252 | 0.3426 | 0.3489 | nan | 0.3787 | 0.3065 | 0.0 | 0.3738 | 0.3017 |
0.1097 | 0.77 | 220 | 0.1254 | 0.2902 | 0.4440 | 0.4396 | nan | 0.4185 | 0.4696 | 0.0 | 0.4015 | 0.4691 |
0.1234 | 0.84 | 240 | 0.1180 | 0.2718 | 0.4132 | 0.4029 | nan | 0.3535 | 0.4730 | 0.0 | 0.3439 | 0.4717 |
0.1774 | 0.91 | 260 | 0.1170 | 0.3964 | 0.6114 | 0.5946 | nan | 0.5145 | 0.7084 | 0.0 | 0.5040 | 0.6851 |
0.0754 | 0.98 | 280 | 0.1170 | 0.2904 | 0.4468 | 0.4031 | nan | 0.1942 | 0.6994 | 0.0 | 0.1931 | 0.6781 |
0.1382 | 1.05 | 300 | 0.1054 | 0.3532 | 0.5403 | 0.5220 | nan | 0.4344 | 0.6462 | 0.0 | 0.4284 | 0.6312 |
0.0812 | 1.12 | 320 | 0.1029 | 0.3404 | 0.5203 | 0.4872 | nan | 0.3294 | 0.7111 | 0.0 | 0.3273 | 0.6938 |
0.0754 | 1.19 | 340 | 0.1113 | 0.2714 | 0.4123 | 0.4066 | nan | 0.3794 | 0.4451 | 0.0 | 0.3698 | 0.4443 |
0.1153 | 1.26 | 360 | 0.1053 | 0.3478 | 0.5274 | 0.5136 | nan | 0.4478 | 0.6070 | 0.0 | 0.4407 | 0.6028 |
0.1036 | 1.33 | 380 | 0.1052 | 0.3907 | 0.5977 | 0.5784 | nan | 0.4859 | 0.7095 | 0.0 | 0.4810 | 0.6912 |
0.1002 | 1.4 | 400 | 0.1050 | 0.3212 | 0.4887 | 0.4820 | nan | 0.4498 | 0.5276 | 0.0 | 0.4373 | 0.5261 |
0.0667 | 1.47 | 420 | 0.1145 | 0.2930 | 0.4444 | 0.4272 | nan | 0.3453 | 0.5434 | 0.0 | 0.3374 | 0.5416 |
0.0789 | 1.54 | 440 | 0.1021 | 0.3482 | 0.5335 | 0.5037 | nan | 0.3611 | 0.7060 | 0.0 | 0.3584 | 0.6861 |
0.1067 | 1.61 | 460 | 0.1052 | 0.3891 | 0.6020 | 0.5718 | nan | 0.4277 | 0.7762 | 0.0 | 0.4243 | 0.7430 |
0.0931 | 1.68 | 480 | 0.1172 | 0.2708 | 0.4163 | 0.4196 | nan | 0.4354 | 0.3971 | 0.0 | 0.4155 | 0.3970 |
0.0963 | 1.75 | 500 | 0.0984 | 0.3751 | 0.5701 | 0.5526 | nan | 0.4688 | 0.6713 | 0.0 | 0.4637 | 0.6615 |
0.0787 | 1.82 | 520 | 0.0973 | 0.3590 | 0.5448 | 0.5282 | nan | 0.4490 | 0.6406 | 0.0 | 0.4402 | 0.6367 |
0.0699 | 1.89 | 540 | 0.1156 | 0.3087 | 0.4707 | 0.4711 | nan | 0.4731 | 0.4683 | 0.0 | 0.4581 | 0.4680 |
0.0949 | 1.96 | 560 | 0.0978 | 0.3474 | 0.5313 | 0.5081 | nan | 0.3974 | 0.6653 | 0.0 | 0.3936 | 0.6486 |
0.1397 | 2.03 | 580 | 0.0969 | 0.3561 | 0.5429 | 0.5201 | nan | 0.4112 | 0.6746 | 0.0 | 0.4067 | 0.6616 |
0.0749 | 2.1 | 600 | 0.0992 | 0.3904 | 0.5960 | 0.5901 | nan | 0.5620 | 0.6299 | 0.0 | 0.5493 | 0.6220 |
0.0916 | 2.17 | 620 | 0.1031 | 0.4125 | 0.6294 | 0.6244 | nan | 0.6005 | 0.6583 | 0.0 | 0.5889 | 0.6486 |
0.1168 | 2.24 | 640 | 0.0958 | 0.3648 | 0.5568 | 0.5369 | nan | 0.4420 | 0.6716 | 0.0 | 0.4366 | 0.6577 |
0.0879 | 2.31 | 660 | 0.0963 | 0.3617 | 0.5539 | 0.5220 | nan | 0.3698 | 0.7379 | 0.0 | 0.3657 | 0.7195 |
0.074 | 2.38 | 680 | 0.1027 | 0.3534 | 0.5387 | 0.5240 | nan | 0.4541 | 0.6233 | 0.0 | 0.4458 | 0.6144 |
0.0448 | 2.45 | 700 | 0.0968 | 0.3591 | 0.5437 | 0.5241 | nan | 0.4303 | 0.6571 | 0.0 | 0.4233 | 0.6540 |
0.1011 | 2.52 | 720 | 0.0925 | 0.3884 | 0.5908 | 0.5692 | nan | 0.4660 | 0.7156 | 0.0 | 0.4580 | 0.7071 |
0.0898 | 2.59 | 740 | 0.0929 | 0.3687 | 0.5610 | 0.5424 | nan | 0.4539 | 0.6680 | 0.0 | 0.4469 | 0.6592 |
0.0645 | 2.66 | 760 | 0.0920 | 0.4107 | 0.6235 | 0.6133 | nan | 0.5648 | 0.6821 | 0.0 | 0.5560 | 0.6761 |
0.0657 | 2.73 | 780 | 0.0905 | 0.3793 | 0.5822 | 0.5561 | nan | 0.4309 | 0.7336 | 0.0 | 0.4293 | 0.7087 |
0.0792 | 2.8 | 800 | 0.1014 | 0.3526 | 0.5358 | 0.5216 | nan | 0.4539 | 0.6177 | 0.0 | 0.4409 | 0.6168 |
0.1359 | 2.87 | 820 | 0.0988 | 0.3957 | 0.6123 | 0.5772 | nan | 0.4095 | 0.8152 | 0.0 | 0.4075 | 0.7794 |
0.1265 | 2.94 | 840 | 0.1329 | 0.2427 | 0.3705 | 0.3669 | nan | 0.3497 | 0.3912 | 0.0 | 0.3372 | 0.3911 |
0.1051 | 3.01 | 860 | 0.0971 | 0.3935 | 0.5987 | 0.5920 | nan | 0.5603 | 0.6371 | 0.0 | 0.5495 | 0.6311 |
0.1066 | 3.08 | 880 | 0.0906 | 0.3882 | 0.5888 | 0.5667 | nan | 0.4614 | 0.7161 | 0.0 | 0.4576 | 0.7070 |
0.1001 | 3.15 | 900 | 0.0940 | 0.3714 | 0.5661 | 0.5318 | nan | 0.3684 | 0.7637 | 0.0 | 0.3657 | 0.7485 |
0.114 | 3.22 | 920 | 0.1004 | 0.3721 | 0.5649 | 0.5571 | nan | 0.5198 | 0.6100 | 0.0 | 0.5086 | 0.6078 |
0.0969 | 3.29 | 940 | 0.0960 | 0.3933 | 0.5965 | 0.5751 | nan | 0.4728 | 0.7201 | 0.0 | 0.4664 | 0.7136 |
0.1018 | 3.36 | 960 | 0.0973 | 0.3314 | 0.5007 | 0.4885 | nan | 0.4302 | 0.5712 | 0.0 | 0.4255 | 0.5686 |
0.1173 | 3.43 | 980 | 0.0890 | 0.4049 | 0.6205 | 0.5990 | nan | 0.4962 | 0.7448 | 0.0 | 0.4928 | 0.7219 |
0.0957 | 3.5 | 1000 | 0.0941 | 0.3724 | 0.5672 | 0.5452 | nan | 0.4404 | 0.6939 | 0.0 | 0.4346 | 0.6825 |
0.0976 | 3.57 | 1020 | 0.0994 | 0.3447 | 0.5219 | 0.5082 | nan | 0.4430 | 0.6007 | 0.0 | 0.4360 | 0.5980 |
0.145 | 3.64 | 1040 | 0.0916 | 0.3668 | 0.5572 | 0.5300 | nan | 0.4000 | 0.7144 | 0.0 | 0.3951 | 0.7053 |
0.0494 | 3.71 | 1060 | 0.0867 | 0.4152 | 0.6317 | 0.6105 | nan | 0.5093 | 0.7540 | 0.0 | 0.5023 | 0.7432 |
0.0851 | 3.78 | 1080 | 0.0873 | 0.3918 | 0.5949 | 0.5719 | nan | 0.4618 | 0.7281 | 0.0 | 0.4547 | 0.7208 |
0.0463 | 3.85 | 1100 | 0.0907 | 0.3686 | 0.5600 | 0.5335 | nan | 0.4068 | 0.7131 | 0.0 | 0.4009 | 0.7048 |
0.0825 | 3.92 | 1120 | 0.0930 | 0.3694 | 0.5606 | 0.5369 | nan | 0.4237 | 0.6976 | 0.0 | 0.4175 | 0.6909 |
0.0622 | 3.99 | 1140 | 0.0934 | 0.3848 | 0.5835 | 0.5638 | nan | 0.4697 | 0.6974 | 0.0 | 0.4623 | 0.6919 |
0.0633 | 4.06 | 1160 | 0.0932 | 0.4324 | 0.6573 | 0.6438 | nan | 0.5791 | 0.7356 | 0.0 | 0.5700 | 0.7272 |
0.0975 | 4.13 | 1180 | 0.0925 | 0.4221 | 0.6430 | 0.6230 | nan | 0.5277 | 0.7584 | 0.0 | 0.5188 | 0.7474 |
0.0961 | 4.2 | 1200 | 0.0899 | 0.3870 | 0.5889 | 0.5640 | nan | 0.4448 | 0.7330 | 0.0 | 0.4404 | 0.7206 |
0.0528 | 4.27 | 1220 | 0.0914 | 0.4008 | 0.6107 | 0.5804 | nan | 0.4354 | 0.7860 | 0.0 | 0.4282 | 0.7742 |
0.0877 | 4.34 | 1240 | 0.0933 | 0.3777 | 0.5732 | 0.5536 | nan | 0.4599 | 0.6866 | 0.0 | 0.4525 | 0.6808 |
0.0579 | 4.41 | 1260 | 0.0906 | 0.3926 | 0.5972 | 0.5783 | nan | 0.4881 | 0.7064 | 0.0 | 0.4801 | 0.6977 |
0.1101 | 4.48 | 1280 | 0.0946 | 0.4184 | 0.6364 | 0.6313 | nan | 0.6072 | 0.6655 | 0.0 | 0.5986 | 0.6565 |
0.0898 | 4.55 | 1300 | 0.0930 | 0.4115 | 0.6248 | 0.6156 | nan | 0.5715 | 0.6781 | 0.0 | 0.5619 | 0.6726 |
0.0636 | 4.62 | 1320 | 0.0920 | 0.3985 | 0.6036 | 0.5852 | nan | 0.4970 | 0.7103 | 0.0 | 0.4892 | 0.7062 |
0.0714 | 4.69 | 1340 | 0.0900 | 0.3977 | 0.6032 | 0.5884 | nan | 0.5179 | 0.6885 | 0.0 | 0.5093 | 0.6837 |
0.0862 | 4.76 | 1360 | 0.0880 | 0.4039 | 0.6131 | 0.5891 | nan | 0.4749 | 0.7513 | 0.0 | 0.4702 | 0.7416 |
0.0801 | 4.83 | 1380 | 0.0878 | 0.4142 | 0.6297 | 0.6114 | nan | 0.5239 | 0.7355 | 0.0 | 0.5173 | 0.7254 |
0.0652 | 4.9 | 1400 | 0.0933 | 0.3704 | 0.5614 | 0.5336 | nan | 0.4010 | 0.7217 | 0.0 | 0.3966 | 0.7145 |
0.0633 | 4.97 | 1420 | 0.0914 | 0.3790 | 0.5754 | 0.5630 | nan | 0.5039 | 0.6469 | 0.0 | 0.4944 | 0.6427 |
0.0905 | 5.03 | 1440 | 0.0920 | 0.3680 | 0.5620 | 0.5331 | nan | 0.3949 | 0.7291 | 0.0 | 0.3911 | 0.7127 |
0.0461 | 5.1 | 1460 | 0.0851 | 0.4118 | 0.6274 | 0.5987 | nan | 0.4614 | 0.7934 | 0.0 | 0.4560 | 0.7795 |
0.0598 | 5.17 | 1480 | 0.0907 | 0.4047 | 0.6128 | 0.5942 | nan | 0.5054 | 0.7202 | 0.0 | 0.4959 | 0.7181 |
0.1264 | 5.24 | 1500 | 0.1093 | 0.3601 | 0.5495 | 0.5494 | nan | 0.5490 | 0.5501 | 0.0 | 0.5315 | 0.5487 |
0.065 | 5.31 | 1520 | 0.0904 | 0.4181 | 0.6369 | 0.6184 | nan | 0.5299 | 0.7439 | 0.0 | 0.5210 | 0.7332 |
0.0711 | 5.38 | 1540 | 0.1021 | 0.4315 | 0.6585 | 0.6563 | nan | 0.6460 | 0.6709 | 0.0 | 0.6259 | 0.6685 |
0.0726 | 5.45 | 1560 | 0.0993 | 0.3713 | 0.5609 | 0.5420 | nan | 0.4516 | 0.6703 | 0.0 | 0.4445 | 0.6694 |
0.1181 | 5.52 | 1580 | 0.0957 | 0.3985 | 0.6066 | 0.5941 | nan | 0.5346 | 0.6786 | 0.0 | 0.5300 | 0.6654 |
0.1049 | 5.59 | 1600 | 0.0982 | 0.4586 | 0.6967 | 0.6912 | nan | 0.6649 | 0.7284 | 0.0 | 0.6517 | 0.7242 |
0.1034 | 5.66 | 1620 | 0.0877 | 0.4091 | 0.6254 | 0.5941 | nan | 0.4448 | 0.8060 | 0.0 | 0.4409 | 0.7863 |
0.0745 | 5.73 | 1640 | 0.0912 | 0.3913 | 0.5938 | 0.5731 | nan | 0.4745 | 0.7131 | 0.0 | 0.4692 | 0.7047 |
0.0665 | 5.8 | 1660 | 0.0861 | 0.4349 | 0.6610 | 0.6365 | nan | 0.5196 | 0.8024 | 0.0 | 0.5142 | 0.7906 |
0.0836 | 5.87 | 1680 | 0.0953 | 0.3982 | 0.6031 | 0.5838 | nan | 0.4912 | 0.7151 | 0.0 | 0.4818 | 0.7128 |
0.0765 | 5.94 | 1700 | 0.0899 | 0.3915 | 0.5976 | 0.5774 | nan | 0.4811 | 0.7141 | 0.0 | 0.4755 | 0.6990 |
0.0456 | 6.01 | 1720 | 0.1060 | 0.3429 | 0.5206 | 0.4982 | nan | 0.3908 | 0.6504 | 0.0 | 0.3796 | 0.6493 |
0.0939 | 6.08 | 1740 | 0.0892 | 0.4107 | 0.6285 | 0.5976 | nan | 0.4499 | 0.8072 | 0.0 | 0.4459 | 0.7861 |
0.0756 | 6.15 | 1760 | 0.0867 | 0.4091 | 0.6207 | 0.5969 | nan | 0.4831 | 0.7582 | 0.0 | 0.4765 | 0.7507 |
0.0435 | 6.22 | 1780 | 0.0898 | 0.3919 | 0.5929 | 0.5660 | nan | 0.4374 | 0.7484 | 0.0 | 0.4308 | 0.7449 |
0.0673 | 6.29 | 1800 | 0.0861 | 0.4474 | 0.6795 | 0.6569 | nan | 0.5489 | 0.8100 | 0.0 | 0.5424 | 0.7998 |
0.0499 | 6.36 | 1820 | 0.0877 | 0.3879 | 0.5923 | 0.5593 | nan | 0.4014 | 0.7832 | 0.0 | 0.3981 | 0.7655 |
0.0532 | 6.43 | 1840 | 0.0889 | 0.4420 | 0.6742 | 0.6438 | nan | 0.4987 | 0.8496 | 0.0 | 0.4933 | 0.8328 |
0.0483 | 6.5 | 1860 | 0.0907 | 0.4078 | 0.6178 | 0.5928 | nan | 0.4737 | 0.7619 | 0.0 | 0.4677 | 0.7558 |
0.0886 | 6.57 | 1880 | 0.0938 | 0.4683 | 0.7105 | 0.6990 | nan | 0.6441 | 0.7769 | 0.0 | 0.6309 | 0.7739 |
0.0603 | 6.64 | 1900 | 0.0883 | 0.4295 | 0.6553 | 0.6282 | nan | 0.4989 | 0.8117 | 0.0 | 0.4951 | 0.7935 |
0.0844 | 6.71 | 1920 | 0.0917 | 0.4115 | 0.6241 | 0.6039 | nan | 0.5076 | 0.7406 | 0.0 | 0.5017 | 0.7327 |
0.0688 | 6.78 | 1940 | 0.0910 | 0.4314 | 0.6549 | 0.6359 | nan | 0.5451 | 0.7647 | 0.0 | 0.5372 | 0.7570 |
0.0863 | 6.85 | 1960 | 0.0886 | 0.3809 | 0.5779 | 0.5517 | nan | 0.4265 | 0.7293 | 0.0 | 0.4220 | 0.7208 |
0.0744 | 6.92 | 1980 | 0.0904 | 0.3983 | 0.6038 | 0.5781 | nan | 0.4554 | 0.7521 | 0.0 | 0.4483 | 0.7465 |
0.0836 | 6.99 | 2000 | 0.0878 | 0.4239 | 0.6440 | 0.6216 | nan | 0.5149 | 0.7731 | 0.0 | 0.5091 | 0.7625 |
0.0677 | 7.06 | 2020 | 0.0892 | 0.4554 | 0.6921 | 0.6757 | nan | 0.5973 | 0.7868 | 0.0 | 0.5898 | 0.7763 |
0.0601 | 7.13 | 2040 | 0.0862 | 0.4311 | 0.6546 | 0.6354 | nan | 0.5435 | 0.7657 | 0.0 | 0.5382 | 0.7551 |
0.0682 | 7.2 | 2060 | 0.1049 | 0.3975 | 0.6057 | 0.5953 | nan | 0.5456 | 0.6658 | 0.0 | 0.5283 | 0.6641 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3