<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
segformer-b5-finetuned-segments-crop_crack_early-lr8-350-8
This model is a fine-tuned version of nvidia/mit-b5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1041
- Mean Iou: 0.3648
- Mean Accuracy: 0.5529
- Overall Accuracy: 0.5298
- Accuracy Unlabeled: nan
- Accuracy Crack: 0.4190
- Accuracy Potholes: 0.6869
- Iou Unlabeled: 0.0
- Iou Crack: 0.4137
- Iou Potholes: 0.6809
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Crack | Accuracy Potholes | Iou Unlabeled | Iou Crack | Iou Potholes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4007 | 0.07 | 20 | 0.3652 | 0.0624 | 0.0949 | 0.0850 | nan | 0.0374 | 0.1524 | 0.0 | 0.0372 | 0.1501 |
0.1665 | 0.14 | 40 | 0.2121 | 0.1691 | 0.2604 | 0.2421 | nan | 0.1550 | 0.3657 | 0.0 | 0.1517 | 0.3555 |
0.1145 | 0.21 | 60 | 0.1806 | 0.1182 | 0.1856 | 0.2049 | nan | 0.2972 | 0.0740 | 0.0 | 0.2807 | 0.0739 |
0.0835 | 0.28 | 80 | 0.1521 | 0.2059 | 0.3151 | 0.3161 | nan | 0.3207 | 0.3095 | 0.0 | 0.3104 | 0.3073 |
0.2789 | 0.35 | 100 | 0.1636 | 0.1249 | 0.1951 | 0.2099 | nan | 0.2803 | 0.1100 | 0.0 | 0.2648 | 0.1099 |
0.1435 | 0.42 | 120 | 0.1490 | 0.2611 | 0.4122 | 0.4119 | nan | 0.4104 | 0.4139 | 0.0 | 0.4062 | 0.3772 |
0.2562 | 0.49 | 140 | 0.1370 | 0.2293 | 0.3530 | 0.3499 | nan | 0.3350 | 0.3711 | 0.0 | 0.3265 | 0.3613 |
0.1211 | 0.56 | 160 | 0.1310 | 0.2644 | 0.4043 | 0.3979 | nan | 0.3674 | 0.4411 | 0.0 | 0.3551 | 0.4381 |
0.1379 | 0.63 | 180 | 0.1331 | 0.3149 | 0.4811 | 0.4793 | nan | 0.4704 | 0.4918 | 0.0 | 0.4542 | 0.4907 |
0.1017 | 0.7 | 200 | 0.1477 | 0.1476 | 0.2284 | 0.2249 | nan | 0.2079 | 0.2489 | 0.0 | 0.2062 | 0.2367 |
0.1201 | 0.77 | 220 | 0.1340 | 0.3514 | 0.5395 | 0.5410 | nan | 0.5482 | 0.5307 | 0.0 | 0.5278 | 0.5262 |
0.1098 | 0.84 | 240 | 0.1263 | 0.3347 | 0.5155 | 0.4942 | nan | 0.3926 | 0.6384 | 0.0 | 0.3861 | 0.6181 |
0.1992 | 0.91 | 260 | 0.1235 | 0.3532 | 0.5454 | 0.5258 | nan | 0.4320 | 0.6588 | 0.0 | 0.4261 | 0.6334 |
0.0827 | 0.98 | 280 | 0.1295 | 0.2970 | 0.4775 | 0.4428 | nan | 0.2768 | 0.6782 | 0.0 | 0.2762 | 0.6147 |
0.1425 | 1.05 | 300 | 0.1229 | 0.3292 | 0.5049 | 0.5057 | nan | 0.5095 | 0.5003 | 0.0 | 0.4962 | 0.4915 |
0.0923 | 1.12 | 320 | 0.1092 | 0.3527 | 0.5398 | 0.5058 | nan | 0.3433 | 0.7363 | 0.0 | 0.3395 | 0.7186 |
0.0869 | 1.19 | 340 | 0.1298 | 0.2323 | 0.3519 | 0.3558 | nan | 0.3746 | 0.3292 | 0.0 | 0.3695 | 0.3275 |
0.1178 | 1.26 | 360 | 0.1221 | 0.2744 | 0.4174 | 0.4113 | nan | 0.3819 | 0.4530 | 0.0 | 0.3727 | 0.4506 |
0.1186 | 1.33 | 380 | 0.1162 | 0.2850 | 0.4392 | 0.4270 | nan | 0.3688 | 0.5096 | 0.0 | 0.3651 | 0.4899 |
0.1096 | 1.4 | 400 | 0.1152 | 0.3531 | 0.5435 | 0.5225 | nan | 0.4224 | 0.6645 | 0.0 | 0.4160 | 0.6435 |
0.0721 | 1.47 | 420 | 0.1093 | 0.3263 | 0.4962 | 0.4784 | nan | 0.3936 | 0.5987 | 0.0 | 0.3852 | 0.5937 |
0.0771 | 1.54 | 440 | 0.1220 | 0.2754 | 0.4189 | 0.4082 | nan | 0.3571 | 0.4808 | 0.0 | 0.3485 | 0.4779 |
0.1211 | 1.61 | 460 | 0.1183 | 0.3253 | 0.5003 | 0.4915 | nan | 0.4495 | 0.5511 | 0.0 | 0.4350 | 0.5411 |
0.1116 | 1.68 | 480 | 0.1151 | 0.2657 | 0.4045 | 0.3948 | nan | 0.3487 | 0.4602 | 0.0 | 0.3376 | 0.4595 |
0.0958 | 1.75 | 500 | 0.1086 | 0.3547 | 0.5430 | 0.5300 | nan | 0.4682 | 0.6177 | 0.0 | 0.4621 | 0.6021 |
0.0861 | 1.82 | 520 | 0.1115 | 0.3653 | 0.5563 | 0.5405 | nan | 0.4651 | 0.6476 | 0.0 | 0.4543 | 0.6415 |
0.0792 | 1.89 | 540 | 0.1236 | 0.3061 | 0.4694 | 0.4720 | nan | 0.4843 | 0.4545 | 0.0 | 0.4668 | 0.4516 |
0.1062 | 1.96 | 560 | 0.1381 | 0.2473 | 0.3812 | 0.3945 | nan | 0.4581 | 0.3042 | 0.0 | 0.4380 | 0.3039 |
0.1673 | 2.03 | 580 | 0.1208 | 0.2577 | 0.4016 | 0.3795 | nan | 0.2737 | 0.5296 | 0.0 | 0.2708 | 0.5024 |
0.0792 | 2.1 | 600 | 0.1131 | 0.3264 | 0.4979 | 0.4946 | nan | 0.4790 | 0.5168 | 0.0 | 0.4685 | 0.5108 |
0.0746 | 2.17 | 620 | 0.1110 | 0.3276 | 0.4999 | 0.5010 | nan | 0.5063 | 0.4935 | 0.0 | 0.4986 | 0.4844 |
0.1398 | 2.24 | 640 | 0.1144 | 0.2616 | 0.3995 | 0.3822 | nan | 0.2998 | 0.4992 | 0.0 | 0.2970 | 0.4878 |
0.0998 | 2.31 | 660 | 0.1018 | 0.3241 | 0.4946 | 0.4600 | nan | 0.2951 | 0.6940 | 0.0 | 0.2921 | 0.6803 |
0.0804 | 2.38 | 680 | 0.1070 | 0.3108 | 0.4730 | 0.4570 | nan | 0.3806 | 0.5654 | 0.0 | 0.3730 | 0.5594 |
0.0467 | 2.45 | 700 | 0.1154 | 0.2576 | 0.3901 | 0.3715 | nan | 0.2828 | 0.4974 | 0.0 | 0.2782 | 0.4946 |
0.1093 | 2.52 | 720 | 0.1035 | 0.3819 | 0.5911 | 0.5641 | nan | 0.4353 | 0.7469 | 0.0 | 0.4326 | 0.7132 |
0.0975 | 2.59 | 740 | 0.1105 | 0.3186 | 0.4839 | 0.4634 | nan | 0.3658 | 0.6019 | 0.0 | 0.3570 | 0.5990 |
0.073 | 2.66 | 760 | 0.0997 | 0.3789 | 0.5831 | 0.5574 | nan | 0.4348 | 0.7314 | 0.0 | 0.4308 | 0.7058 |
0.0707 | 2.73 | 780 | 0.1029 | 0.3297 | 0.5169 | 0.4728 | nan | 0.2621 | 0.7716 | 0.0 | 0.2619 | 0.7273 |
0.0773 | 2.8 | 800 | 0.1080 | 0.3066 | 0.4655 | 0.4518 | nan | 0.3860 | 0.5451 | 0.0 | 0.3773 | 0.5424 |
0.1331 | 2.87 | 820 | 0.0986 | 0.3536 | 0.5407 | 0.5157 | nan | 0.3962 | 0.6852 | 0.0 | 0.3915 | 0.6693 |
0.1179 | 2.94 | 840 | 0.1160 | 0.2542 | 0.3856 | 0.3731 | nan | 0.3131 | 0.4581 | 0.0 | 0.3051 | 0.4576 |
0.107 | 3.01 | 860 | 0.1082 | 0.3336 | 0.5072 | 0.5030 | nan | 0.4831 | 0.5313 | 0.0 | 0.4726 | 0.5282 |
0.1113 | 3.08 | 880 | 0.1055 | 0.3116 | 0.4874 | 0.4569 | nan | 0.3110 | 0.6639 | 0.0 | 0.3102 | 0.6247 |
0.1252 | 3.15 | 900 | 0.1177 | 0.2671 | 0.4057 | 0.3930 | nan | 0.3322 | 0.4792 | 0.0 | 0.3285 | 0.4727 |
0.1175 | 3.22 | 920 | 0.1033 | 0.3595 | 0.5479 | 0.5346 | nan | 0.4709 | 0.6249 | 0.0 | 0.4618 | 0.6166 |
0.1227 | 3.29 | 940 | 0.1054 | 0.3316 | 0.5022 | 0.4793 | nan | 0.3696 | 0.6349 | 0.0 | 0.3640 | 0.6307 |
0.112 | 3.36 | 960 | 0.1165 | 0.3649 | 0.5604 | 0.5391 | nan | 0.4373 | 0.6836 | 0.0 | 0.4256 | 0.6692 |
0.1261 | 3.43 | 980 | 0.1025 | 0.3636 | 0.5579 | 0.5369 | nan | 0.4365 | 0.6793 | 0.0 | 0.4294 | 0.6616 |
0.0946 | 3.5 | 1000 | 0.1065 | 0.3146 | 0.4856 | 0.4603 | nan | 0.3395 | 0.6317 | 0.0 | 0.3364 | 0.6075 |
0.1034 | 3.57 | 1020 | 0.1142 | 0.2993 | 0.4536 | 0.4347 | nan | 0.3444 | 0.5628 | 0.0 | 0.3388 | 0.5589 |
0.148 | 3.64 | 1040 | 0.1038 | 0.3243 | 0.4949 | 0.4704 | nan | 0.3534 | 0.6363 | 0.0 | 0.3493 | 0.6234 |
0.0485 | 3.71 | 1060 | 0.1084 | 0.3227 | 0.4911 | 0.4750 | nan | 0.3979 | 0.5842 | 0.0 | 0.3895 | 0.5786 |
0.0977 | 3.78 | 1080 | 0.1158 | 0.2886 | 0.4387 | 0.4213 | nan | 0.3378 | 0.5396 | 0.0 | 0.3305 | 0.5352 |
0.0483 | 3.85 | 1100 | 0.1095 | 0.3233 | 0.4906 | 0.4659 | nan | 0.3480 | 0.6331 | 0.0 | 0.3406 | 0.6295 |
0.0904 | 3.92 | 1120 | 0.1191 | 0.2858 | 0.4341 | 0.4219 | nan | 0.3637 | 0.5046 | 0.0 | 0.3539 | 0.5034 |
0.0652 | 3.99 | 1140 | 0.1077 | 0.3449 | 0.5275 | 0.5087 | nan | 0.4189 | 0.6361 | 0.0 | 0.4110 | 0.6237 |
0.0647 | 4.06 | 1160 | 0.1184 | 0.3120 | 0.4741 | 0.4731 | nan | 0.4681 | 0.4802 | 0.0 | 0.4572 | 0.4788 |
0.1083 | 4.13 | 1180 | 0.1026 | 0.3622 | 0.5591 | 0.5305 | nan | 0.3940 | 0.7243 | 0.0 | 0.3900 | 0.6964 |
0.097 | 4.2 | 1200 | 0.1150 | 0.3055 | 0.4638 | 0.4407 | nan | 0.3302 | 0.5974 | 0.0 | 0.3252 | 0.5913 |
0.0577 | 4.27 | 1220 | 0.0989 | 0.3769 | 0.5744 | 0.5452 | nan | 0.4059 | 0.7429 | 0.0 | 0.3988 | 0.7319 |
0.0905 | 4.34 | 1240 | 0.1048 | 0.3180 | 0.4861 | 0.4615 | nan | 0.3442 | 0.6280 | 0.0 | 0.3425 | 0.6115 |
0.0622 | 4.41 | 1260 | 0.0958 | 0.3764 | 0.5772 | 0.5470 | nan | 0.4029 | 0.7515 | 0.0 | 0.3989 | 0.7304 |
0.1154 | 4.48 | 1280 | 0.1102 | 0.3525 | 0.5393 | 0.5386 | nan | 0.5352 | 0.5435 | 0.0 | 0.5186 | 0.5390 |
0.1005 | 4.55 | 1300 | 0.1081 | 0.3593 | 0.5496 | 0.5437 | nan | 0.5154 | 0.5838 | 0.0 | 0.5040 | 0.5739 |
0.0698 | 4.62 | 1320 | 0.1156 | 0.3279 | 0.4992 | 0.4926 | nan | 0.4615 | 0.5368 | 0.0 | 0.4487 | 0.5349 |
0.0758 | 4.69 | 1340 | 0.1124 | 0.3384 | 0.5161 | 0.5110 | nan | 0.4866 | 0.5457 | 0.0 | 0.4734 | 0.5417 |
0.0997 | 4.76 | 1360 | 0.1065 | 0.3157 | 0.4800 | 0.4559 | nan | 0.3405 | 0.6196 | 0.0 | 0.3362 | 0.6109 |
0.0878 | 4.83 | 1380 | 0.1015 | 0.3561 | 0.5424 | 0.5249 | nan | 0.4412 | 0.6437 | 0.0 | 0.4330 | 0.6354 |
0.0707 | 4.9 | 1400 | 0.1002 | 0.3398 | 0.5182 | 0.4862 | nan | 0.3331 | 0.7033 | 0.0 | 0.3297 | 0.6897 |
0.0649 | 4.97 | 1420 | 0.1267 | 0.3123 | 0.4773 | 0.4715 | nan | 0.4438 | 0.5107 | 0.0 | 0.4270 | 0.5100 |
0.0972 | 5.03 | 1440 | 0.1053 | 0.3397 | 0.5248 | 0.4902 | nan | 0.3251 | 0.7245 | 0.0 | 0.3242 | 0.6950 |
0.0572 | 5.1 | 1460 | 0.0991 | 0.3752 | 0.5773 | 0.5486 | nan | 0.4115 | 0.7431 | 0.0 | 0.4087 | 0.7170 |
0.0708 | 5.17 | 1480 | 0.0969 | 0.3593 | 0.5495 | 0.5186 | nan | 0.3712 | 0.7277 | 0.0 | 0.3667 | 0.7111 |
0.1332 | 5.24 | 1500 | 0.0984 | 0.3562 | 0.5433 | 0.5243 | nan | 0.4340 | 0.6525 | 0.0 | 0.4277 | 0.6409 |
0.0694 | 5.31 | 1520 | 0.0972 | 0.3703 | 0.5649 | 0.5440 | nan | 0.4438 | 0.6860 | 0.0 | 0.4370 | 0.6738 |
0.08 | 5.38 | 1540 | 0.0982 | 0.3846 | 0.5857 | 0.5671 | nan | 0.4783 | 0.6930 | 0.0 | 0.4711 | 0.6826 |
0.0813 | 5.45 | 1560 | 0.0966 | 0.3769 | 0.5737 | 0.5484 | nan | 0.4276 | 0.7198 | 0.0 | 0.4237 | 0.7071 |
0.1169 | 5.52 | 1580 | 0.1064 | 0.3271 | 0.4972 | 0.4849 | nan | 0.4260 | 0.5683 | 0.0 | 0.4149 | 0.5663 |
0.0689 | 5.59 | 1600 | 0.1038 | 0.3670 | 0.5610 | 0.5462 | nan | 0.4756 | 0.6463 | 0.0 | 0.4672 | 0.6339 |
0.0999 | 5.66 | 1620 | 0.1013 | 0.3647 | 0.5576 | 0.5412 | nan | 0.4630 | 0.6522 | 0.0 | 0.4536 | 0.6406 |
0.0787 | 5.73 | 1640 | 0.1090 | 0.3247 | 0.4924 | 0.4720 | nan | 0.3749 | 0.6098 | 0.0 | 0.3668 | 0.6073 |
0.0715 | 5.8 | 1660 | 0.1099 | 0.3695 | 0.5636 | 0.5551 | nan | 0.5147 | 0.6124 | 0.0 | 0.4976 | 0.6110 |
0.0926 | 5.87 | 1680 | 0.0988 | 0.3825 | 0.5837 | 0.5581 | nan | 0.4357 | 0.7316 | 0.0 | 0.4296 | 0.7178 |
0.0884 | 5.94 | 1700 | 0.1006 | 0.3566 | 0.5411 | 0.5199 | nan | 0.4188 | 0.6634 | 0.0 | 0.4138 | 0.6561 |
0.0552 | 6.01 | 1720 | 0.1058 | 0.3475 | 0.5279 | 0.4992 | nan | 0.3620 | 0.6937 | 0.0 | 0.3529 | 0.6896 |
0.0878 | 6.08 | 1740 | 0.1020 | 0.3471 | 0.5284 | 0.5012 | nan | 0.3711 | 0.6857 | 0.0 | 0.3651 | 0.6763 |
0.0887 | 6.15 | 1760 | 0.1062 | 0.3315 | 0.5034 | 0.4784 | nan | 0.3591 | 0.6477 | 0.0 | 0.3513 | 0.6431 |
0.0475 | 6.22 | 1780 | 0.1019 | 0.3594 | 0.5464 | 0.5227 | nan | 0.4094 | 0.6834 | 0.0 | 0.4024 | 0.6756 |
0.0659 | 6.29 | 1800 | 0.0989 | 0.4000 | 0.6156 | 0.5872 | nan | 0.4512 | 0.7800 | 0.0 | 0.4483 | 0.7517 |
0.0565 | 6.36 | 1820 | 0.1119 | 0.3080 | 0.4690 | 0.4436 | nan | 0.3221 | 0.6159 | 0.0 | 0.3187 | 0.6053 |
0.0598 | 6.43 | 1840 | 0.1119 | 0.3122 | 0.4755 | 0.4506 | nan | 0.3320 | 0.6190 | 0.0 | 0.3276 | 0.6089 |
0.0498 | 6.5 | 1860 | 0.1142 | 0.2978 | 0.4520 | 0.4271 | nan | 0.3079 | 0.5962 | 0.0 | 0.3051 | 0.5883 |
0.0968 | 6.57 | 1880 | 0.1041 | 0.3703 | 0.5638 | 0.5481 | nan | 0.4731 | 0.6545 | 0.0 | 0.4669 | 0.6440 |
0.0648 | 6.64 | 1900 | 0.1073 | 0.3697 | 0.5627 | 0.5423 | nan | 0.4449 | 0.6804 | 0.0 | 0.4356 | 0.6735 |
0.0892 | 6.71 | 1920 | 0.1095 | 0.3276 | 0.4978 | 0.4720 | nan | 0.3490 | 0.6465 | 0.0 | 0.3442 | 0.6386 |
0.066 | 6.78 | 1940 | 0.1111 | 0.3513 | 0.5344 | 0.5296 | nan | 0.5066 | 0.5623 | 0.0 | 0.4972 | 0.5566 |
0.0921 | 6.85 | 1960 | 0.1050 | 0.3576 | 0.5453 | 0.5285 | nan | 0.4481 | 0.6425 | 0.0 | 0.4406 | 0.6322 |
0.0762 | 6.92 | 1980 | 0.1066 | 0.3585 | 0.5476 | 0.5281 | nan | 0.4354 | 0.6597 | 0.0 | 0.4248 | 0.6507 |
0.0874 | 6.99 | 2000 | 0.1056 | 0.3390 | 0.5168 | 0.4934 | nan | 0.3816 | 0.6519 | 0.0 | 0.3753 | 0.6418 |
0.0775 | 7.06 | 2020 | 0.1010 | 0.3632 | 0.5550 | 0.5372 | nan | 0.4521 | 0.6579 | 0.0 | 0.4459 | 0.6438 |
0.0578 | 7.13 | 2040 | 0.1033 | 0.3673 | 0.5603 | 0.5442 | nan | 0.4675 | 0.6531 | 0.0 | 0.4588 | 0.6432 |
0.0722 | 7.2 | 2060 | 0.1048 | 0.3518 | 0.5356 | 0.5161 | nan | 0.4228 | 0.6485 | 0.0 | 0.4167 | 0.6387 |
0.0599 | 7.27 | 2080 | 0.1097 | 0.3453 | 0.5261 | 0.5100 | nan | 0.4328 | 0.6195 | 0.0 | 0.4256 | 0.6102 |
0.0798 | 7.34 | 2100 | 0.1064 | 0.3494 | 0.5371 | 0.5139 | nan | 0.4030 | 0.6711 | 0.0 | 0.3982 | 0.6499 |
0.0671 | 7.41 | 2120 | 0.1288 | 0.2880 | 0.4355 | 0.4143 | nan | 0.3132 | 0.5578 | 0.0 | 0.3084 | 0.5555 |
0.0688 | 7.48 | 2140 | 0.1080 | 0.3426 | 0.5207 | 0.4964 | nan | 0.3800 | 0.6614 | 0.0 | 0.3740 | 0.6538 |
0.0772 | 7.55 | 2160 | 0.1409 | 0.2690 | 0.4090 | 0.4058 | nan | 0.3906 | 0.4275 | 0.0 | 0.3805 | 0.4266 |
0.0542 | 7.62 | 2180 | 0.1142 | 0.3239 | 0.4905 | 0.4707 | nan | 0.3763 | 0.6047 | 0.0 | 0.3697 | 0.6020 |
0.0699 | 7.69 | 2200 | 0.1046 | 0.3775 | 0.5771 | 0.5432 | nan | 0.3808 | 0.7734 | 0.0 | 0.3758 | 0.7567 |
0.0484 | 7.76 | 2220 | 0.1163 | 0.3437 | 0.5225 | 0.5123 | nan | 0.4634 | 0.5816 | 0.0 | 0.4525 | 0.5786 |
0.0581 | 7.83 | 2240 | 0.1020 | 0.3700 | 0.5653 | 0.5367 | nan | 0.4002 | 0.7304 | 0.0 | 0.3966 | 0.7135 |
0.0565 | 7.9 | 2260 | 0.1041 | 0.3648 | 0.5529 | 0.5298 | nan | 0.4190 | 0.6869 | 0.0 | 0.4137 | 0.6809 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3