<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
segformer-b5-finetuned-segments-crop_crack_early-lr6-350-8
This model is a fine-tuned version of nvidia/mit-b5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1193
- Mean Iou: 0.3367
- Mean Accuracy: 0.5109
- Overall Accuracy: 0.4963
- Accuracy Unlabeled: nan
- Accuracy Crack: 0.4266
- Accuracy Potholes: 0.5952
- Iou Unlabeled: 0.0
- Iou Crack: 0.4186
- Iou Potholes: 0.5915
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Crack | Accuracy Potholes | Iou Unlabeled | Iou Crack | Iou Potholes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3866 | 0.07 | 20 | 0.4031 | 0.0249 | 0.0377 | 0.0385 | nan | 0.0424 | 0.0331 | 0.0 | 0.0421 | 0.0327 |
0.1963 | 0.14 | 40 | 0.2341 | 0.0897 | 0.1376 | 0.1429 | nan | 0.1684 | 0.1068 | 0.0 | 0.1624 | 0.1066 |
0.1268 | 0.21 | 60 | 0.1775 | 0.1088 | 0.1700 | 0.1885 | nan | 0.2767 | 0.0633 | 0.0 | 0.2632 | 0.0633 |
0.0964 | 0.28 | 80 | 0.1500 | 0.2160 | 0.3305 | 0.3313 | nan | 0.3349 | 0.3261 | 0.0 | 0.3251 | 0.3229 |
0.2564 | 0.35 | 100 | 0.1549 | 0.1962 | 0.3067 | 0.3214 | nan | 0.3914 | 0.2221 | 0.0 | 0.3666 | 0.2219 |
0.1414 | 0.42 | 120 | 0.1507 | 0.3000 | 0.4611 | 0.4689 | nan | 0.5057 | 0.4165 | 0.0 | 0.4954 | 0.4045 |
0.1419 | 0.49 | 140 | 0.1390 | 0.2567 | 0.4095 | 0.3786 | nan | 0.2310 | 0.5880 | 0.0 | 0.2298 | 0.5403 |
0.1134 | 0.56 | 160 | 0.1325 | 0.2672 | 0.4087 | 0.4090 | nan | 0.4106 | 0.4069 | 0.0 | 0.3988 | 0.4027 |
0.1312 | 0.63 | 180 | 0.1262 | 0.3163 | 0.4822 | 0.4740 | nan | 0.4349 | 0.5295 | 0.0 | 0.4230 | 0.5259 |
0.1103 | 0.7 | 200 | 0.1376 | 0.1918 | 0.2951 | 0.2923 | nan | 0.2791 | 0.3110 | 0.0 | 0.2763 | 0.2989 |
0.1163 | 0.77 | 220 | 0.1334 | 0.2892 | 0.4453 | 0.4505 | nan | 0.4751 | 0.4156 | 0.0 | 0.4523 | 0.4153 |
0.1068 | 0.84 | 240 | 0.1237 | 0.2900 | 0.4439 | 0.4374 | nan | 0.4063 | 0.4814 | 0.0 | 0.3947 | 0.4753 |
0.2267 | 0.91 | 260 | 0.1322 | 0.3473 | 0.5482 | 0.5329 | nan | 0.4600 | 0.6363 | 0.0 | 0.4544 | 0.5875 |
0.0842 | 0.98 | 280 | 0.1205 | 0.3034 | 0.4680 | 0.4395 | nan | 0.3034 | 0.6326 | 0.0 | 0.2989 | 0.6114 |
0.1425 | 1.05 | 300 | 0.1226 | 0.3565 | 0.5556 | 0.5476 | nan | 0.5093 | 0.6019 | 0.0 | 0.5023 | 0.5674 |
0.0876 | 1.12 | 320 | 0.1088 | 0.3571 | 0.5432 | 0.5247 | nan | 0.4364 | 0.6500 | 0.0 | 0.4280 | 0.6432 |
0.0829 | 1.19 | 340 | 0.1187 | 0.2714 | 0.4112 | 0.4062 | nan | 0.3819 | 0.4405 | 0.0 | 0.3761 | 0.4382 |
0.11 | 1.26 | 360 | 0.1169 | 0.3105 | 0.4726 | 0.4702 | nan | 0.4589 | 0.4863 | 0.0 | 0.4505 | 0.4811 |
0.1219 | 1.33 | 380 | 0.1144 | 0.3198 | 0.4932 | 0.4804 | nan | 0.4191 | 0.5674 | 0.0 | 0.4160 | 0.5435 |
0.1124 | 1.4 | 400 | 0.1099 | 0.2951 | 0.4479 | 0.4354 | nan | 0.3758 | 0.5199 | 0.0 | 0.3699 | 0.5154 |
0.0729 | 1.47 | 420 | 0.1063 | 0.3745 | 0.5697 | 0.5436 | nan | 0.4191 | 0.7203 | 0.0 | 0.4124 | 0.7110 |
0.1154 | 1.54 | 440 | 0.1079 | 0.3125 | 0.4810 | 0.4525 | nan | 0.3165 | 0.6455 | 0.0 | 0.3137 | 0.6238 |
0.1261 | 1.61 | 460 | 0.1114 | 0.3406 | 0.5243 | 0.5091 | nan | 0.4368 | 0.6117 | 0.0 | 0.4284 | 0.5932 |
0.1003 | 1.68 | 480 | 0.1178 | 0.2676 | 0.4071 | 0.3937 | nan | 0.3300 | 0.4841 | 0.0 | 0.3190 | 0.4839 |
0.0915 | 1.75 | 500 | 0.1035 | 0.3572 | 0.5527 | 0.5296 | nan | 0.4197 | 0.6857 | 0.0 | 0.4166 | 0.6549 |
0.0883 | 1.82 | 520 | 0.1084 | 0.3561 | 0.5422 | 0.5307 | nan | 0.4761 | 0.6083 | 0.0 | 0.4651 | 0.6033 |
0.0766 | 1.89 | 540 | 0.1062 | 0.3534 | 0.5374 | 0.5258 | nan | 0.4704 | 0.6045 | 0.0 | 0.4586 | 0.6016 |
0.1108 | 1.96 | 560 | 0.1169 | 0.2802 | 0.4267 | 0.4250 | nan | 0.4166 | 0.4368 | 0.0 | 0.4047 | 0.4359 |
0.1647 | 2.03 | 580 | 0.1126 | 0.2839 | 0.4346 | 0.4198 | nan | 0.3493 | 0.5199 | 0.0 | 0.3466 | 0.5052 |
0.0811 | 2.1 | 600 | 0.1055 | 0.3803 | 0.5800 | 0.5670 | nan | 0.5049 | 0.6551 | 0.0 | 0.4972 | 0.6436 |
0.0809 | 2.17 | 620 | 0.1157 | 0.3494 | 0.5339 | 0.5334 | nan | 0.5312 | 0.5365 | 0.0 | 0.5222 | 0.5261 |
0.1387 | 2.24 | 640 | 0.1167 | 0.2710 | 0.4118 | 0.3985 | nan | 0.3352 | 0.4884 | 0.0 | 0.3322 | 0.4807 |
0.1004 | 2.31 | 660 | 0.1048 | 0.3148 | 0.4783 | 0.4523 | nan | 0.3282 | 0.6285 | 0.0 | 0.3253 | 0.6190 |
0.0807 | 2.38 | 680 | 0.1032 | 0.3410 | 0.5201 | 0.4996 | nan | 0.4020 | 0.6381 | 0.0 | 0.3971 | 0.6259 |
0.0494 | 2.45 | 700 | 0.1098 | 0.3095 | 0.4701 | 0.4515 | nan | 0.3629 | 0.5773 | 0.0 | 0.3567 | 0.5719 |
0.1155 | 2.52 | 720 | 0.1125 | 0.3477 | 0.5306 | 0.5182 | nan | 0.4593 | 0.6018 | 0.0 | 0.4465 | 0.5966 |
0.0935 | 2.59 | 740 | 0.1141 | 0.3113 | 0.4756 | 0.4651 | nan | 0.4150 | 0.5362 | 0.0 | 0.4060 | 0.5278 |
0.0757 | 2.66 | 760 | 0.1029 | 0.3753 | 0.5740 | 0.5574 | nan | 0.4780 | 0.6701 | 0.0 | 0.4717 | 0.6542 |
0.0705 | 2.73 | 780 | 0.1052 | 0.3040 | 0.4633 | 0.4343 | nan | 0.2960 | 0.6306 | 0.0 | 0.2945 | 0.6173 |
0.0712 | 2.8 | 800 | 0.1069 | 0.3359 | 0.5107 | 0.5001 | nan | 0.4495 | 0.5719 | 0.0 | 0.4379 | 0.5697 |
0.1333 | 2.87 | 820 | 0.1026 | 0.3495 | 0.5316 | 0.5068 | nan | 0.3885 | 0.6746 | 0.0 | 0.3841 | 0.6643 |
0.1269 | 2.94 | 840 | 0.1371 | 0.2208 | 0.3346 | 0.3209 | nan | 0.2555 | 0.4137 | 0.0 | 0.2489 | 0.4135 |
0.1034 | 3.01 | 860 | 0.1012 | 0.3639 | 0.5571 | 0.5373 | nan | 0.4427 | 0.6715 | 0.0 | 0.4375 | 0.6541 |
0.112 | 3.08 | 880 | 0.1007 | 0.3550 | 0.5445 | 0.5165 | nan | 0.3829 | 0.7061 | 0.0 | 0.3812 | 0.6838 |
0.1031 | 3.15 | 900 | 0.1030 | 0.3416 | 0.5183 | 0.4942 | nan | 0.3794 | 0.6572 | 0.0 | 0.3732 | 0.6517 |
0.1174 | 3.22 | 920 | 0.1041 | 0.3561 | 0.5413 | 0.5249 | nan | 0.4469 | 0.6357 | 0.0 | 0.4392 | 0.6291 |
0.1096 | 3.29 | 940 | 0.1132 | 0.3231 | 0.4887 | 0.4733 | nan | 0.3995 | 0.5779 | 0.0 | 0.3936 | 0.5756 |
0.1089 | 3.36 | 960 | 0.1065 | 0.3735 | 0.5676 | 0.5456 | nan | 0.4406 | 0.6946 | 0.0 | 0.4323 | 0.6882 |
0.1207 | 3.43 | 980 | 0.1005 | 0.3610 | 0.5493 | 0.5254 | nan | 0.4116 | 0.6869 | 0.0 | 0.4067 | 0.6764 |
0.0988 | 3.5 | 1000 | 0.1075 | 0.3235 | 0.4943 | 0.4702 | nan | 0.3550 | 0.6336 | 0.0 | 0.3524 | 0.6181 |
0.1012 | 3.57 | 1020 | 0.1108 | 0.3094 | 0.4702 | 0.4488 | nan | 0.3468 | 0.5936 | 0.0 | 0.3438 | 0.5844 |
0.1522 | 3.64 | 1040 | 0.1074 | 0.3352 | 0.5083 | 0.4894 | nan | 0.3991 | 0.6175 | 0.0 | 0.3929 | 0.6126 |
0.0507 | 3.71 | 1060 | 0.1031 | 0.3508 | 0.5334 | 0.5140 | nan | 0.4214 | 0.6455 | 0.0 | 0.4152 | 0.6374 |
0.0974 | 3.78 | 1080 | 0.1108 | 0.3120 | 0.4726 | 0.4498 | nan | 0.3409 | 0.6043 | 0.0 | 0.3337 | 0.6024 |
0.0432 | 3.85 | 1100 | 0.1029 | 0.3276 | 0.4984 | 0.4708 | nan | 0.3391 | 0.6577 | 0.0 | 0.3346 | 0.6482 |
0.0878 | 3.92 | 1120 | 0.1203 | 0.2935 | 0.4450 | 0.4284 | nan | 0.3489 | 0.5410 | 0.0 | 0.3410 | 0.5396 |
0.0645 | 3.99 | 1140 | 0.1114 | 0.3547 | 0.5413 | 0.5229 | nan | 0.4352 | 0.6473 | 0.0 | 0.4275 | 0.6365 |
0.073 | 4.06 | 1160 | 0.1088 | 0.3599 | 0.5455 | 0.5284 | nan | 0.4466 | 0.6445 | 0.0 | 0.4388 | 0.6408 |
0.1115 | 4.13 | 1180 | 0.1039 | 0.3405 | 0.5211 | 0.4964 | nan | 0.3784 | 0.6638 | 0.0 | 0.3748 | 0.6468 |
0.0932 | 4.2 | 1200 | 0.1090 | 0.3421 | 0.5193 | 0.5024 | nan | 0.4219 | 0.6167 | 0.0 | 0.4123 | 0.6141 |
0.0625 | 4.27 | 1220 | 0.1057 | 0.3567 | 0.5440 | 0.5180 | nan | 0.3941 | 0.6939 | 0.0 | 0.3869 | 0.6832 |
0.092 | 4.34 | 1240 | 0.1145 | 0.3060 | 0.4637 | 0.4485 | nan | 0.3761 | 0.5512 | 0.0 | 0.3687 | 0.5492 |
0.0605 | 4.41 | 1260 | 0.0981 | 0.3715 | 0.5661 | 0.5389 | nan | 0.4089 | 0.7232 | 0.0 | 0.4032 | 0.7113 |
0.1164 | 4.48 | 1280 | 0.1272 | 0.3301 | 0.5069 | 0.5158 | nan | 0.5586 | 0.4551 | 0.0 | 0.5355 | 0.4547 |
0.1143 | 4.55 | 1300 | 0.1199 | 0.3206 | 0.4898 | 0.4868 | nan | 0.4726 | 0.5071 | 0.0 | 0.4619 | 0.4999 |
0.0704 | 4.62 | 1320 | 0.1187 | 0.3217 | 0.4909 | 0.4857 | nan | 0.4609 | 0.5210 | 0.0 | 0.4449 | 0.5202 |
0.0756 | 4.69 | 1340 | 0.1096 | 0.3272 | 0.4973 | 0.4868 | nan | 0.4368 | 0.5578 | 0.0 | 0.4274 | 0.5544 |
0.0925 | 4.76 | 1360 | 0.1049 | 0.3392 | 0.5157 | 0.4883 | nan | 0.3577 | 0.6736 | 0.0 | 0.3529 | 0.6646 |
0.091 | 4.83 | 1380 | 0.1020 | 0.3688 | 0.5637 | 0.5415 | nan | 0.4355 | 0.6920 | 0.0 | 0.4294 | 0.6769 |
0.0721 | 4.9 | 1400 | 0.1086 | 0.3267 | 0.4972 | 0.4690 | nan | 0.3342 | 0.6602 | 0.0 | 0.3302 | 0.6500 |
0.065 | 4.97 | 1420 | 0.1184 | 0.3388 | 0.5174 | 0.5071 | nan | 0.4581 | 0.5767 | 0.0 | 0.4442 | 0.5723 |
0.0982 | 5.03 | 1440 | 0.1124 | 0.3311 | 0.5042 | 0.4801 | nan | 0.3654 | 0.6430 | 0.0 | 0.3587 | 0.6347 |
0.0564 | 5.1 | 1460 | 0.1055 | 0.3691 | 0.5663 | 0.5456 | nan | 0.4470 | 0.6855 | 0.0 | 0.4386 | 0.6688 |
0.0704 | 5.17 | 1480 | 0.1111 | 0.3261 | 0.4949 | 0.4716 | nan | 0.3605 | 0.6293 | 0.0 | 0.3529 | 0.6253 |
0.1318 | 5.24 | 1500 | 0.1102 | 0.3438 | 0.5233 | 0.5123 | nan | 0.4599 | 0.5867 | 0.0 | 0.4472 | 0.5842 |
0.0679 | 5.31 | 1520 | 0.1099 | 0.3395 | 0.5171 | 0.5042 | nan | 0.4423 | 0.5920 | 0.0 | 0.4304 | 0.5880 |
0.0831 | 5.38 | 1540 | 0.1080 | 0.3761 | 0.5723 | 0.5595 | nan | 0.4983 | 0.6463 | 0.0 | 0.4865 | 0.6417 |
0.0823 | 5.45 | 1560 | 0.1017 | 0.3696 | 0.5625 | 0.5362 | nan | 0.4109 | 0.7141 | 0.0 | 0.4065 | 0.7023 |
0.1767 | 5.52 | 1580 | 0.1148 | 0.3141 | 0.4770 | 0.4594 | nan | 0.3753 | 0.5786 | 0.0 | 0.3666 | 0.5757 |
0.0619 | 5.59 | 1600 | 0.1028 | 0.3645 | 0.5625 | 0.5413 | nan | 0.4401 | 0.6849 | 0.0 | 0.4374 | 0.6562 |
0.0953 | 5.66 | 1620 | 0.1057 | 0.3654 | 0.5571 | 0.5394 | nan | 0.4551 | 0.6590 | 0.0 | 0.4427 | 0.6536 |
0.0784 | 5.73 | 1640 | 0.1070 | 0.3438 | 0.5230 | 0.5007 | nan | 0.3942 | 0.6517 | 0.0 | 0.3864 | 0.6450 |
0.0718 | 5.8 | 1660 | 0.1099 | 0.3749 | 0.5724 | 0.5603 | nan | 0.5025 | 0.6423 | 0.0 | 0.4845 | 0.6401 |
0.0947 | 5.87 | 1680 | 0.1047 | 0.3769 | 0.5769 | 0.5516 | nan | 0.4309 | 0.7229 | 0.0 | 0.4250 | 0.7056 |
0.089 | 5.94 | 1700 | 0.1036 | 0.3603 | 0.5478 | 0.5247 | nan | 0.4146 | 0.6810 | 0.0 | 0.4086 | 0.6722 |
0.0513 | 6.01 | 1720 | 0.1097 | 0.3378 | 0.5147 | 0.4878 | nan | 0.3592 | 0.6703 | 0.0 | 0.3508 | 0.6626 |
0.0876 | 6.08 | 1740 | 0.1042 | 0.3437 | 0.5247 | 0.5025 | nan | 0.3969 | 0.6524 | 0.0 | 0.3894 | 0.6417 |
0.0839 | 6.15 | 1760 | 0.1095 | 0.3352 | 0.5097 | 0.4910 | nan | 0.4016 | 0.6178 | 0.0 | 0.3906 | 0.6150 |
0.0465 | 6.22 | 1780 | 0.1077 | 0.3488 | 0.5317 | 0.5106 | nan | 0.4101 | 0.6533 | 0.0 | 0.4028 | 0.6437 |
0.0644 | 6.29 | 1800 | 0.1066 | 0.3895 | 0.5951 | 0.5790 | nan | 0.5024 | 0.6877 | 0.0 | 0.4961 | 0.6725 |
0.0583 | 6.36 | 1820 | 0.1108 | 0.3356 | 0.5102 | 0.4873 | nan | 0.3776 | 0.6429 | 0.0 | 0.3724 | 0.6344 |
0.0589 | 6.43 | 1840 | 0.1112 | 0.3365 | 0.5132 | 0.4847 | nan | 0.3488 | 0.6776 | 0.0 | 0.3437 | 0.6659 |
0.0518 | 6.5 | 1860 | 0.1183 | 0.3093 | 0.4700 | 0.4432 | nan | 0.3152 | 0.6247 | 0.0 | 0.3121 | 0.6158 |
0.0965 | 6.57 | 1880 | 0.1084 | 0.3805 | 0.5787 | 0.5669 | nan | 0.5101 | 0.6473 | 0.0 | 0.4999 | 0.6415 |
0.064 | 6.64 | 1900 | 0.1244 | 0.3459 | 0.5278 | 0.5182 | nan | 0.4723 | 0.5832 | 0.0 | 0.4568 | 0.5810 |
0.0831 | 6.71 | 1920 | 0.1108 | 0.3398 | 0.5184 | 0.4937 | nan | 0.3758 | 0.6610 | 0.0 | 0.3732 | 0.6461 |
0.0686 | 6.78 | 1940 | 0.1194 | 0.3305 | 0.5019 | 0.4972 | nan | 0.4748 | 0.5289 | 0.0 | 0.4654 | 0.5262 |
0.0984 | 6.85 | 1960 | 0.1129 | 0.3478 | 0.5284 | 0.5120 | nan | 0.4336 | 0.6232 | 0.0 | 0.4241 | 0.6194 |
0.074 | 6.92 | 1980 | 0.1088 | 0.3607 | 0.5506 | 0.5286 | nan | 0.4237 | 0.6775 | 0.0 | 0.4150 | 0.6671 |
0.0869 | 6.99 | 2000 | 0.1031 | 0.3727 | 0.5668 | 0.5473 | nan | 0.4539 | 0.6798 | 0.0 | 0.4444 | 0.6737 |
0.0792 | 7.06 | 2020 | 0.0991 | 0.3862 | 0.5870 | 0.5678 | nan | 0.4761 | 0.6979 | 0.0 | 0.4696 | 0.6889 |
0.0606 | 7.13 | 2040 | 0.1031 | 0.3684 | 0.5601 | 0.5351 | nan | 0.4156 | 0.7045 | 0.0 | 0.4102 | 0.6950 |
0.073 | 7.2 | 2060 | 0.1069 | 0.3700 | 0.5620 | 0.5433 | nan | 0.4540 | 0.6701 | 0.0 | 0.4460 | 0.6641 |
0.0598 | 7.27 | 2080 | 0.1148 | 0.3471 | 0.5265 | 0.5150 | nan | 0.4598 | 0.5933 | 0.0 | 0.4517 | 0.5897 |
0.0789 | 7.34 | 2100 | 0.1110 | 0.3479 | 0.5341 | 0.5128 | nan | 0.4108 | 0.6574 | 0.0 | 0.4055 | 0.6381 |
0.0653 | 7.41 | 2120 | 0.1201 | 0.3077 | 0.4662 | 0.4359 | nan | 0.2910 | 0.6415 | 0.0 | 0.2886 | 0.6343 |
0.0682 | 7.48 | 2140 | 0.1061 | 0.3568 | 0.5426 | 0.5170 | nan | 0.3946 | 0.6907 | 0.0 | 0.3902 | 0.6802 |
0.0768 | 7.55 | 2160 | 0.1121 | 0.3427 | 0.5196 | 0.4971 | nan | 0.3900 | 0.6492 | 0.0 | 0.3843 | 0.6438 |
0.0551 | 7.62 | 2180 | 0.1213 | 0.3079 | 0.4665 | 0.4370 | nan | 0.2965 | 0.6365 | 0.0 | 0.2935 | 0.6300 |
0.0698 | 7.69 | 2200 | 0.1057 | 0.3757 | 0.5708 | 0.5441 | nan | 0.4163 | 0.7253 | 0.0 | 0.4094 | 0.7176 |
0.0444 | 7.76 | 2220 | 0.1080 | 0.3623 | 0.5489 | 0.5312 | nan | 0.4466 | 0.6512 | 0.0 | 0.4398 | 0.6471 |
0.0566 | 7.83 | 2240 | 0.1119 | 0.3388 | 0.5143 | 0.4900 | nan | 0.3737 | 0.6549 | 0.0 | 0.3690 | 0.6475 |
0.0581 | 7.9 | 2260 | 0.1193 | 0.3367 | 0.5109 | 0.4963 | nan | 0.4266 | 0.5952 | 0.0 | 0.4186 | 0.5915 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3