<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
wav2vec2-large-xls-r-300m-Urdu
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.9889
 - Wer: 0.5607
 - Cer: 0.2370
 
Evaluation Commands
- To evaluate on 
mozilla-foundation/common_voice_8_0with splittest 
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-300m-Urdu --dataset mozilla-foundation/common_voice_8_0 --config ur --split test
Inference With LM
from datasets import load_dataset, Audio
from transformers import pipeline
model = "kingabzpro/wav2vec2-large-xls-r-300m-Urdu"
data = load_dataset("mozilla-foundation/common_voice_8_0",
                     "ur",
                     split="test", 
                     streaming=True, 
                     use_auth_token=True)
sample_iter = iter(data.cast_column("path", 
                    Audio(sampling_rate=16_000)))
sample = next(sample_iter)
asr = pipeline("automatic-speech-recognition", model=model)
prediction = asr(sample["path"]["array"], 
                  chunk_length_s=5, 
                  stride_length_s=1)
prediction
# => {'text': 'اب یہ ونگین لمحاتانکھار دلمیں میںفوث کریلیا اجائ'}
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
 - train_batch_size: 32
 - eval_batch_size: 8
 - seed: 42
 - gradient_accumulation_steps: 2
 - total_train_batch_size: 64
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_steps: 1000
 - num_epochs: 200
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | 
|---|---|---|---|---|---|
| 3.6398 | 30.77 | 400 | 3.3517 | 1.0 | 1.0 | 
| 2.9225 | 61.54 | 800 | 2.5123 | 1.0 | 0.8310 | 
| 1.2568 | 92.31 | 1200 | 0.9699 | 0.6273 | 0.2575 | 
| 0.8974 | 123.08 | 1600 | 0.9715 | 0.5888 | 0.2457 | 
| 0.7151 | 153.85 | 2000 | 0.9984 | 0.5588 | 0.2353 | 
| 0.6416 | 184.62 | 2400 | 0.9889 | 0.5607 | 0.2370 | 
Framework versions
- Transformers 4.17.0.dev0
 - Pytorch 1.10.2+cu102
 - Datasets 1.18.2.dev0
 - Tokenizers 0.11.0
 
Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run ./eval.py) | 
|---|---|
| 52.03 | 39.89 |