generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

perioli_manifesti_v5.8

This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step F1 Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Container id Seal number Container quantity Container type Tare Package quantity Weight Others
0.1271 2.34 500 0.9951 0.0246 0.9605 0.9667 0.9636 0.9951 {'precision': 0.98125, 'recall': 0.98125, 'f1': 0.98125, 'number': 160} {'precision': 0.9939024390243902, 'recall': 0.9819277108433735, 'f1': 0.9878787878787879, 'number': 166} {'precision': 1.0, 'recall': 0.9888888888888889, 'f1': 0.9944134078212291, 'number': 90} {'precision': 0.9738562091503268, 'recall': 0.9738562091503268, 'f1': 0.9738562091503268, 'number': 153} {'precision': 0.9516129032258065, 'recall': 0.9752066115702479, 'f1': 0.963265306122449, 'number': 121} {'precision': 0.930635838150289, 'recall': 0.9757575757575757, 'f1': 0.9526627218934911, 'number': 165} {'precision': 0.952755905511811, 'recall': 0.952755905511811, 'f1': 0.952755905511811, 'number': 127} {'precision': 0.9507523939808481, 'recall': 0.9546703296703297, 'f1': 0.9527073337902673, 'number': 728}
0.016 4.67 1000 0.9953 0.0255 0.9604 0.9643 0.9624 0.9953 {'precision': 0.9874213836477987, 'recall': 0.98125, 'f1': 0.9843260188087775, 'number': 160} {'precision': 0.9939393939393939, 'recall': 0.9879518072289156, 'f1': 0.9909365558912386, 'number': 166} {'precision': 0.9888888888888889, 'recall': 0.9888888888888889, 'f1': 0.9888888888888889, 'number': 90} {'precision': 0.9671052631578947, 'recall': 0.9607843137254902, 'f1': 0.9639344262295081, 'number': 153} {'precision': 0.9669421487603306, 'recall': 0.9669421487603306, 'f1': 0.9669421487603306, 'number': 121} {'precision': 0.9137931034482759, 'recall': 0.9636363636363636, 'f1': 0.9380530973451328, 'number': 165} {'precision': 0.976, 'recall': 0.9606299212598425, 'f1': 0.9682539682539683, 'number': 127} {'precision': 0.9493844049247606, 'recall': 0.9532967032967034, 'f1': 0.9513365318711446, 'number': 728}
0.0093 7.01 1500 0.9960 0.0232 0.9668 0.9708 0.9688 0.9960 {'precision': 0.9874213836477987, 'recall': 0.98125, 'f1': 0.9843260188087775, 'number': 160} {'precision': 0.9939393939393939, 'recall': 0.9879518072289156, 'f1': 0.9909365558912386, 'number': 166} {'precision': 1.0, 'recall': 0.9888888888888889, 'f1': 0.9944134078212291, 'number': 90} {'precision': 0.9803921568627451, 'recall': 0.9803921568627451, 'f1': 0.9803921568627451, 'number': 153} {'precision': 0.9596774193548387, 'recall': 0.9834710743801653, 'f1': 0.9714285714285714, 'number': 121} {'precision': 0.9352941176470588, 'recall': 0.9636363636363636, 'f1': 0.9492537313432835, 'number': 165} {'precision': 0.9612403100775194, 'recall': 0.9763779527559056, 'f1': 0.9687500000000001, 'number': 127} {'precision': 0.9587912087912088, 'recall': 0.9587912087912088, 'f1': 0.9587912087912088, 'number': 728}
0.0053 9.35 2000 0.9950 0.0296 0.9578 0.9696 0.9637 0.9950 {'precision': 0.96875, 'recall': 0.96875, 'f1': 0.96875, 'number': 160} {'precision': 0.9939759036144579, 'recall': 0.9939759036144579, 'f1': 0.9939759036144579, 'number': 166} {'precision': 1.0, 'recall': 0.9888888888888889, 'f1': 0.9944134078212291, 'number': 90} {'precision': 0.9803921568627451, 'recall': 0.9803921568627451, 'f1': 0.9803921568627451, 'number': 153} {'precision': 0.967741935483871, 'recall': 0.9917355371900827, 'f1': 0.979591836734694, 'number': 121} {'precision': 0.9090909090909091, 'recall': 0.9696969696969697, 'f1': 0.93841642228739, 'number': 165} {'precision': 0.96875, 'recall': 0.9763779527559056, 'f1': 0.9725490196078432, 'number': 127} {'precision': 0.9455782312925171, 'recall': 0.9546703296703297, 'f1': 0.9501025290498976, 'number': 728}
0.0046 11.68 2500 0.9955 0.0291 0.9668 0.9719 0.9694 0.9955 {'precision': 0.9874213836477987, 'recall': 0.98125, 'f1': 0.9843260188087775, 'number': 160} {'precision': 0.9939393939393939, 'recall': 0.9879518072289156, 'f1': 0.9909365558912386, 'number': 166} {'precision': 1.0, 'recall': 0.9888888888888889, 'f1': 0.9944134078212291, 'number': 90} {'precision': 0.9803921568627451, 'recall': 0.9803921568627451, 'f1': 0.9803921568627451, 'number': 153} {'precision': 0.9758064516129032, 'recall': 1.0, 'f1': 0.9877551020408163, 'number': 121} {'precision': 0.9190751445086706, 'recall': 0.9636363636363636, 'f1': 0.9408284023668639, 'number': 165} {'precision': 0.9763779527559056, 'recall': 0.9763779527559056, 'f1': 0.9763779527559056, 'number': 127} {'precision': 0.9574759945130316, 'recall': 0.9587912087912088, 'f1': 0.9581331503088538, 'number': 728}
0.0028 14.02 3000 0.9948 0.0322 0.9578 0.9678 0.9628 0.9948 {'precision': 0.9936708860759493, 'recall': 0.98125, 'f1': 0.9874213836477987, 'number': 160} {'precision': 0.9879518072289156, 'recall': 0.9879518072289156, 'f1': 0.9879518072289156, 'number': 166} {'precision': 0.978021978021978, 'recall': 0.9888888888888889, 'f1': 0.9834254143646408, 'number': 90} {'precision': 0.974025974025974, 'recall': 0.9803921568627451, 'f1': 0.977198697068404, 'number': 153} {'precision': 0.975609756097561, 'recall': 0.9917355371900827, 'f1': 0.9836065573770492, 'number': 121} {'precision': 0.8977272727272727, 'recall': 0.9575757575757575, 'f1': 0.9266862170087976, 'number': 165} {'precision': 0.9609375, 'recall': 0.968503937007874, 'f1': 0.9647058823529412, 'number': 127} {'precision': 0.9480874316939891, 'recall': 0.9532967032967034, 'f1': 0.9506849315068493, 'number': 728}
0.0017 16.36 3500 0.9955 0.0296 0.9652 0.9719 0.9685 0.9955 {'precision': 0.9936708860759493, 'recall': 0.98125, 'f1': 0.9874213836477987, 'number': 160} {'precision': 0.9820359281437125, 'recall': 0.9879518072289156, 'f1': 0.984984984984985, 'number': 166} {'precision': 0.978021978021978, 'recall': 0.9888888888888889, 'f1': 0.9834254143646408, 'number': 90} {'precision': 0.974025974025974, 'recall': 0.9803921568627451, 'f1': 0.977198697068404, 'number': 153} {'precision': 0.9836065573770492, 'recall': 0.9917355371900827, 'f1': 0.9876543209876544, 'number': 121} {'precision': 0.930635838150289, 'recall': 0.9757575757575757, 'f1': 0.9526627218934911, 'number': 165} {'precision': 0.9682539682539683, 'recall': 0.9606299212598425, 'f1': 0.9644268774703557, 'number': 127} {'precision': 0.9562243502051984, 'recall': 0.9601648351648352, 'f1': 0.9581905414667581, 'number': 728}
0.0011 18.69 4000 0.9952 0.0315 0.9623 0.9713 0.9668 0.9952 {'precision': 0.9936708860759493, 'recall': 0.98125, 'f1': 0.9874213836477987, 'number': 160} {'precision': 0.9820359281437125, 'recall': 0.9879518072289156, 'f1': 0.984984984984985, 'number': 166} {'precision': 0.978021978021978, 'recall': 0.9888888888888889, 'f1': 0.9834254143646408, 'number': 90} {'precision': 0.974025974025974, 'recall': 0.9803921568627451, 'f1': 0.977198697068404, 'number': 153} {'precision': 0.967741935483871, 'recall': 0.9917355371900827, 'f1': 0.979591836734694, 'number': 121} {'precision': 0.9195402298850575, 'recall': 0.9696969696969697, 'f1': 0.943952802359882, 'number': 165} {'precision': 0.96875, 'recall': 0.9763779527559056, 'f1': 0.9725490196078432, 'number': 127} {'precision': 0.9547945205479452, 'recall': 0.9574175824175825, 'f1': 0.9561042524005487, 'number': 728}

Framework versions