generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

bert_sm_cv_summarized_4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 D-index
No log 1.0 250 0.4713 0.812 0.5814 0.1282 0.2101 1.4926
0.5708 2.0 500 0.4584 0.811 0.5625 0.1385 0.2222 1.4948
0.5708 3.0 750 0.4557 0.813 0.5769 0.1538 0.2429 1.5029
0.4231 4.0 1000 0.4700 0.81 0.5316 0.2154 0.3066 1.5202
0.4231 5.0 1250 0.4979 0.812 0.5385 0.2513 0.3427 1.5353
0.3292 6.0 1500 0.5337 0.816 0.5647 0.2462 0.3429 1.5389
0.3292 7.0 1750 0.6282 0.797 0.4615 0.2462 0.3211 1.5131
0.2218 8.0 2000 0.7182 0.805 0.5 0.2513 0.3345 1.5257
0.2218 9.0 2250 0.8488 0.809 0.5208 0.2564 0.3436 1.5329
0.1478 10.0 2500 0.9830 0.809 0.5294 0.1846 0.2738 1.5082
0.1478 11.0 2750 1.0302 0.79 0.4419 0.2923 0.3519 1.5193
0.077 12.0 3000 1.0467 0.795 0.4658 0.3487 0.3988 1.5452
0.077 13.0 3250 1.2609 0.803 0.4931 0.3641 0.4189 1.5612
0.0328 14.0 3500 1.4127 0.806 0.5044 0.2923 0.3701 1.5411
0.0328 15.0 3750 1.6626 0.802 0.4835 0.2256 0.3077 1.5128
0.0189 16.0 4000 1.7062 0.81 0.5362 0.1897 0.2803 1.5113
0.0189 17.0 4250 1.9225 0.809 0.54 0.1385 0.2204 1.4921
0.0214 18.0 4500 1.8228 0.81 0.5269 0.2513 0.3403 1.5325
0.0214 19.0 4750 1.9544 0.789 0.4355 0.2769 0.3386 1.5127
0.0184 20.0 5000 1.9996 0.802 0.48 0.1846 0.2667 1.4986

Framework versions