generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

bert_sm_cv_defined_4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 D-index
No log 1.0 250 0.4642 0.813 0.5833 0.1436 0.2305 1.4993
0.5606 2.0 500 0.4524 0.816 0.6 0.1692 0.264 1.5124
0.5606 3.0 750 0.4448 0.82 0.6154 0.2051 0.3077 1.5303
0.4415 4.0 1000 0.4583 0.819 0.6591 0.1487 0.2427 1.5093
0.4415 5.0 1250 0.4659 0.817 0.5652 0.2667 0.3624 1.5473
0.3644 6.0 1500 0.4927 0.805 0.5 0.3077 0.3810 1.5449
0.3644 7.0 1750 0.5493 0.82 0.6230 0.1949 0.2969 1.5267
0.2821 8.0 2000 0.6262 0.815 0.5893 0.1692 0.2629 1.5110
0.2821 9.0 2250 0.6864 0.798 0.4685 0.2667 0.3399 1.5215
0.2084 10.0 2500 0.8556 0.816 0.5696 0.2308 0.3285 1.5337
0.2084 11.0 2750 0.9422 0.814 0.5542 0.2359 0.3309 1.5327
0.114 12.0 3000 1.0528 0.807 0.5109 0.2410 0.3275 1.5249
0.114 13.0 3250 1.2325 0.802 0.4889 0.3385 0.4000 1.5513
0.0612 14.0 3500 1.3032 0.782 0.4148 0.2872 0.3394 1.5066
0.0612 15.0 3750 1.7304 0.806 0.5102 0.1282 0.2049 1.4843
0.0454 16.0 4000 1.6902 0.797 0.4643 0.2667 0.3388 1.5201
0.0454 17.0 4250 1.6552 0.78 0.4172 0.3231 0.3642 1.5161
0.0379 18.0 4500 1.7798 0.806 0.5054 0.2410 0.3264 1.5236
0.0379 19.0 4750 1.8226 0.816 0.5753 0.2154 0.3134 1.5284
0.0487 20.0 5000 1.8439 0.802 0.4824 0.2103 0.2929 1.5075

Framework versions