generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

bert_sm_cv_defined_summarized_4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 D-index
No log 1.0 250 0.4931 0.805 0.5 0.0308 0.0580 1.4481
0.5724 2.0 500 0.4850 0.806 0.5263 0.0513 0.0935 1.4569
0.5724 3.0 750 0.4842 0.811 0.6 0.0923 0.16 1.4785
0.4468 4.0 1000 0.4954 0.81 0.5806 0.0923 0.1593 1.4771
0.4468 5.0 1250 0.5307 0.81 0.5862 0.0872 0.1518 1.4753
0.381 6.0 1500 0.5312 0.809 0.5455 0.1231 0.2008 1.4866
0.381 7.0 1750 0.5354 0.807 0.5161 0.1641 0.2490 1.4983
0.283 8.0 2000 0.7003 0.811 0.6364 0.0718 0.1290 1.4712
0.283 9.0 2250 0.7079 0.798 0.4568 0.1897 0.2681 1.4949
0.1621 10.0 2500 0.9032 0.8 0.4603 0.1487 0.2248 1.4833
0.1621 11.0 2750 1.0875 0.797 0.4474 0.1744 0.2509 1.4881
0.0678 12.0 3000 1.2256 0.769 0.3861 0.3128 0.3456 1.4975
0.0678 13.0 3250 1.6378 0.793 0.4 0.1231 0.1882 1.4645
0.039 14.0 3500 1.7475 0.767 0.2841 0.1282 0.1767 1.4301
0.039 15.0 3750 1.8575 0.804 0.4848 0.0821 0.1404 1.4652
0.0295 16.0 4000 1.8151 0.775 0.3370 0.1590 0.2160 1.4522
0.0295 17.0 4250 1.8788 0.795 0.4219 0.1385 0.2085 1.4728
0.0416 18.0 4500 1.8193 0.765 0.3462 0.2308 0.2769 1.4636
0.0416 19.0 4750 1.6942 0.788 0.3896 0.1538 0.2206 1.4685
0.0322 20.0 5000 1.8001 0.801 0.4677 0.1487 0.2257 1.4847

Framework versions