<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
IndoBert-base-ler
This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0348
- Overall Precision: 0.8392
- Overall Recall: 0.8292
- Overall F1: 0.8342
- Overall Accuracy: 0.9961
- Jenis amar F1: 0.9381
- Jenis dakwaan F1: 0.8202
- Jenis perkara F1: 0.7895
- Melanggar uu (dakwaan) F1: 0.6704
- Melanggar uu (pertimbangan hukum) F1: 0.5885
- Melanggar uu (tuntutan) F1: 0.7783
- Nama hakim anggota F1: 0.9045
- Nama hakim ketua F1: 0.8854
- Nama jaksa F1: 0.8905
- Nama panitera F1: 0.9056
- Nama pengacara F1: 0.8288
- Nama pengadilan F1: 0.9964
- Nama saksi F1: 0.8385
- Nama terdakwa F1: 0.8264
- Nomor putusan F1: 0.9359
- Putusan hukuman F1: 0.6659
- Tanggal kejadian F1: 0.3870
- Tanggal putusan F1: 0.9430
- Tingkat kasus F1: 0.9817
- Tuntutan hukuman F1: 0.8348
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- max_sequence_length: 128
- stride: 25% (32)
- decay_rate: 0.01
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Jenis amar F1 | Jenis dakwaan F1 | Jenis perkara F1 | Melanggar uu (dakwaan) F1 | Melanggar uu (pertimbangan hukum) F1 | Melanggar uu (tuntutan) F1 | Nama hakim anggota F1 | Nama hakim ketua F1 | Nama jaksa F1 | Nama panitera F1 | Nama pengacara F1 | Nama pengadilan F1 | Nama saksi F1 | Nama terdakwa F1 | Nomor putusan F1 | Putusan hukuman F1 | Tanggal kejadian F1 | Tanggal putusan F1 | Tingkat kasus F1 | Tuntutan hukuman F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0214 | 1.0 | 7322 | 0.0174 | 0.7920 | 0.7699 | 0.7808 | 0.9956 | 0.8514 | 0.6352 | 0.6728 | 0.5940 | 0.5044 | 0.7329 | 0.8602 | 0.7357 | 0.8160 | 0.8355 | 0.6585 | 0.9661 | 0.8130 | 0.8053 | 0.9248 | 0.5354 | 0.3278 | 0.9372 | 0.9173 | 0.7353 |
0.0127 | 2.0 | 14644 | 0.0162 | 0.7760 | 0.7960 | 0.7859 | 0.9955 | 0.8982 | 0.6809 | 0.7038 | 0.5598 | 0.4747 | 0.6963 | 0.8733 | 0.8681 | 0.8604 | 0.8858 | 0.7114 | 0.9803 | 0.7601 | 0.8242 | 0.9318 | 0.6187 | 0.3976 | 0.9351 | 0.9560 | 0.7015 |
0.0117 | 3.0 | 21966 | 0.0172 | 0.7830 | 0.7701 | 0.7765 | 0.9953 | 0.8487 | 0.6657 | 0.7051 | 0.5092 | 0.5336 | 0.7518 | 0.8460 | 0.8093 | 0.7043 | 0.6803 | 0.7242 | 0.9802 | 0.8191 | 0.8039 | 0.9346 | 0.5290 | 0.3797 | 0.9312 | 0.9564 | 0.7534 |
0.0088 | 4.0 | 29288 | 0.0175 | 0.8086 | 0.8019 | 0.8052 | 0.9960 | 0.9093 | 0.7876 | 0.7571 | 0.6362 | 0.5500 | 0.7384 | 0.8832 | 0.8440 | 0.7949 | 0.8913 | 0.6986 | 0.9874 | 0.8193 | 0.8378 | 0.9089 | 0.5590 | 0.3968 | 0.9534 | 0.9640 | 0.7724 |
0.0092 | 5.0 | 36610 | 0.0171 | 0.8070 | 0.8035 | 0.8053 | 0.9958 | 0.8686 | 0.6188 | 0.7521 | 0.5808 | 0.5625 | 0.7645 | 0.8825 | 0.8168 | 0.8656 | 0.8557 | 0.7155 | 0.9803 | 0.8242 | 0.8132 | 0.9323 | 0.6011 | 0.3756 | 0.9211 | 0.9653 | 0.7570 |
0.0057 | 6.0 | 43932 | 0.0184 | 0.8157 | 0.8077 | 0.8117 | 0.9958 | 0.9050 | 0.8299 | 0.7505 | 0.6424 | 0.4908 | 0.7571 | 0.8822 | 0.8740 | 0.8625 | 0.8970 | 0.7475 | 0.9802 | 0.8158 | 0.8327 | 0.9389 | 0.5801 | 0.3892 | 0.944 | 0.9635 | 0.8073 |
0.0057 | 7.0 | 51254 | 0.0203 | 0.7988 | 0.8277 | 0.8130 | 0.9959 | 0.9273 | 0.7900 | 0.7673 | 0.5932 | 0.5577 | 0.7811 | 0.8863 | 0.8553 | 0.8743 | 0.8945 | 0.7176 | 0.9681 | 0.8316 | 0.8231 | 0.9374 | 0.5983 | 0.4006 | 0.9110 | 0.9620 | 0.8203 |
0.0054 | 8.0 | 58576 | 0.0209 | 0.8263 | 0.8058 | 0.8159 | 0.9959 | 0.8996 | 0.8097 | 0.7661 | 0.6445 | 0.5613 | 0.7778 | 0.9079 | 0.7732 | 0.8783 | 0.8968 | 0.7080 | 0.9910 | 0.8227 | 0.8355 | 0.9401 | 0.5395 | 0.3542 | 0.9279 | 0.9706 | 0.7937 |
0.003 | 9.0 | 65898 | 0.0244 | 0.8255 | 0.8096 | 0.8175 | 0.9956 | 0.9277 | 0.7944 | 0.7146 | 0.6556 | 0.5502 | 0.7842 | 0.8564 | 0.8798 | 0.8813 | 0.8955 | 0.7547 | 0.9857 | 0.8221 | 0.8270 | 0.9399 | 0.6681 | 0.3873 | 0.9468 | 0.9654 | 0.7912 |
0.0031 | 10.0 | 73220 | 0.0256 | 0.8297 | 0.8206 | 0.8251 | 0.9959 | 0.9103 | 0.8239 | 0.7598 | 0.6639 | 0.5665 | 0.7609 | 0.9008 | 0.8765 | 0.8867 | 0.9002 | 0.7590 | 0.9982 | 0.8359 | 0.8322 | 0.9409 | 0.5965 | 0.3774 | 0.9402 | 0.9635 | 0.8070 |
0.0021 | 11.0 | 80542 | 0.0259 | 0.8365 | 0.8238 | 0.8301 | 0.9960 | 0.9191 | 0.8383 | 0.7966 | 0.6644 | 0.5874 | 0.7530 | 0.8944 | 0.8675 | 0.8878 | 0.9041 | 0.7500 | 0.9964 | 0.8319 | 0.8307 | 0.9332 | 0.6536 | 0.3909 | 0.9316 | 0.9670 | 0.8496 |
0.0015 | 12.0 | 87864 | 0.0267 | 0.8344 | 0.8204 | 0.8273 | 0.9960 | 0.9270 | 0.8141 | 0.7881 | 0.6816 | 0.5730 | 0.7855 | 0.8964 | 0.8745 | 0.8926 | 0.8913 | 0.7805 | 0.9946 | 0.8291 | 0.8275 | 0.9332 | 0.6376 | 0.3753 | 0.9273 | 0.9761 | 0.8035 |
0.001 | 13.0 | 95186 | 0.0297 | 0.8316 | 0.8201 | 0.8258 | 0.9960 | 0.9339 | 0.8373 | 0.7351 | 0.6392 | 0.5955 | 0.7816 | 0.9022 | 0.8763 | 0.8968 | 0.8861 | 0.7826 | 0.9964 | 0.8408 | 0.8296 | 0.9223 | 0.6689 | 0.3906 | 0.9404 | 0.9762 | 0.8070 |
0.0007 | 14.0 | 102508 | 0.0317 | 0.8299 | 0.8211 | 0.8254 | 0.9959 | 0.9387 | 0.8462 | 0.7520 | 0.6820 | 0.5964 | 0.7791 | 0.9010 | 0.8770 | 0.8932 | 0.9039 | 0.8142 | 0.9964 | 0.8325 | 0.8262 | 0.9171 | 0.6637 | 0.3807 | 0.9316 | 0.9799 | 0.8450 |
0.0003 | 15.0 | 109830 | 0.0334 | 0.8340 | 0.8274 | 0.8307 | 0.9960 | 0.9368 | 0.8222 | 0.7744 | 0.6737 | 0.5977 | 0.7877 | 0.9053 | 0.8817 | 0.8745 | 0.9038 | 0.8083 | 0.9964 | 0.8345 | 0.8335 | 0.9311 | 0.6681 | 0.3793 | 0.9406 | 0.9762 | 0.8436 |
0.0001 | 16.0 | 117152 | 0.0348 | 0.8392 | 0.8292 | 0.8342 | 0.9961 | 0.9381 | 0.8202 | 0.7895 | 0.6704 | 0.5885 | 0.7783 | 0.9045 | 0.8854 | 0.8905 | 0.9056 | 0.8288 | 0.9964 | 0.8385 | 0.8264 | 0.9359 | 0.6659 | 0.3870 | 0.9430 | 0.9817 | 0.8348 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.3