text-generation puli

PULI GPTrio (7.67B billion parameter)

For further details read our paper or testing our instruct model, see our demo site.

Dataset

Limitations

Citation

If you use this model, please cite the following paper:

@inproceedings {yang-puli-gptrio,
    title = {Mono- and multilingual GPT-3 models for Hungarian},
	booktitle = {Text, Speech, and Dialogue},
	year = {2023},
	publisher = {Springer Nature Switzerland},
    series = {Lecture Notes in Computer Science},
	address = {Plzeň, Czech Republic},
	author = {Yang, Zijian Győző and Laki, László János and Váradi, Tamás and Prószéky, Gábor},
	pages = {94--104},
    isbn = {978-3-031-40498-6}
}

Usage

from transformers import GPTNeoXForCausalLM, AutoTokenizer

model = GPTNeoXForCausalLM.from_pretrained("NYTK/PULI-GPTrio")
tokenizer = AutoTokenizer.from_pretrained("NYTK/PULI-GPTrio")
prompt = "Elmesélek egy történetet a nyelvtechnológiáról."
input_ids = tokenizer(prompt, return_tensors="pt").input_ids

gen_tokens = model.generate(
    input_ids,
    do_sample=True,
    temperature=0.9,
    max_length=100,
)

gen_text = tokenizer.batch_decode(gen_tokens)[0]
print(gen_text)

Usage with pipeline

from transformers import pipeline, GPTNeoXForCausalLM, AutoTokenizer

model = GPTNeoXForCausalLM.from_pretrained("NYTK/PULI-GPTrio")
tokenizer = AutoTokenizer.from_pretrained("NYTK/PULI-GPTrio")
prompt = "Elmesélek egy történetet a nyelvtechnológiáról."
generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)

print(generator(prompt)[0]["generated_text"])