generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

bert_sm_gen1_summarized_cv_4

This model is a fine-tuned version of wiorz/bert_sm_gen1 on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 D-index
No log 1.0 250 2.4563 0.79 0.44 0.2821 0.3438 1.5158
1.9188 2.0 500 0.7587 0.78 0.4126 0.3026 0.3491 1.5091
1.9188 3.0 750 0.4834 0.809 0.5345 0.1590 0.2451 1.4992
0.4332 4.0 1000 0.5400 0.811 0.5366 0.2256 0.3177 1.5251
0.4332 5.0 1250 0.6813 0.787 0.4286 0.2769 0.3364 1.5100
0.2633 6.0 1500 0.9358 0.794 0.4286 0.1692 0.2426 1.4822
0.2633 7.0 1750 1.5052 0.786 0.4159 0.2410 0.3052 1.4962
0.1124 8.0 2000 1.7146 0.791 0.4239 0.2 0.2718 1.4888
0.1124 9.0 2250 1.8601 0.794 0.4382 0.2 0.2746 1.4930
0.0465 10.0 2500 1.9701 0.774 0.3869 0.2718 0.3193 1.4903
0.0465 11.0 2750 2.0934 0.78 0.4101 0.2923 0.3413 1.5056
0.0297 12.0 3000 2.0712 0.79 0.4336 0.2513 0.3182 1.5053
0.0297 13.0 3250 2.1711 0.79 0.4299 0.2359 0.3046 1.4999
0.0328 14.0 3500 2.1590 0.795 0.45 0.2308 0.3051 1.5050
0.0328 15.0 3750 2.1184 0.803 0.4861 0.1795 0.2622 1.4982
0.0311 16.0 4000 2.1504 0.789 0.4355 0.2769 0.3386 1.5127
0.0311 17.0 4250 2.2112 0.773 0.3947 0.3077 0.3458 1.5013
0.0264 18.0 4500 2.2326 0.795 0.4519 0.2410 0.3144 1.5086
0.0264 19.0 4750 2.3306 0.774 0.3885 0.2769 0.3234 1.4921
0.0391 20.0 5000 2.1011 0.801 0.4706 0.1641 0.2433 1.4901

Framework versions