<h1>efficientnet-b5-Brain_Tumors_Image_Classification</h1>
This model is a fine-tuned version of google/efficientnet-b5.
It achieves the following results on the evaluation set:
- Loss: 0.9410
- Accuracy: 0.8020
- F1
- Weighted: 0.7736
- Micro: 0.8020
- Macro: 0.7802
- Recall
- Weighted: 0.8020
- Micro: 0.8020
- Macro: 0.7977
- Precision
- Weighted: 0.8535
- Micro: 0.8020
- Macro: 0.8682
<div style="text-align: center;"> <h2> Model Description </h2> <a href="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/EfficientNet%20-%20Image%20Classification.ipynb"> Click here for the code that I used to create this model. </a>
This project is part of a comparison of seventeen (17) transformers. <a href="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/README.md"> Click here to see the README markdown file for the full project </a> <h2> Intended Uses & Limitations </h2> This model is intended to demonstrate my ability to solve a complex problem using technology.
<h2> Training & Evaluation Data </h2> <a href="https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri"> Brain Tumor Image Classification Dataset </a> <h2> Sample Images </h2> <img src="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/Images/Sample%20Images.png" /> <h2> Class Distribution of Training Dataset </h2> <img src="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/Images/Class%20Distribution%20-%20Training%20Dataset.png"/> <h2> Class Distribution of Evaluation Dataset </h2> <img src="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/Images/Class%20Distribution%20-%20Testing%20Dataset.png"/> </div>
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3872 | 1.0 | 180 | 1.0601 | 0.6853 | 0.6485 | 0.6853 | 0.6550 | 0.6853 | 0.6853 | 0.6802 | 0.8177 | 0.6853 | 0.8330 |
1.3872 | 2.0 | 360 | 0.9533 | 0.7843 | 0.7483 | 0.7843 | 0.7548 | 0.7843 | 0.7843 | 0.7819 | 0.8354 | 0.7843 | 0.8471 |
0.8186 | 3.0 | 540 | 0.9410 | 0.8020 | 0.7736 | 0.8020 | 0.7802 | 0.8020 | 0.8020 | 0.7977 | 0.8535 | 0.8020 | 0.8682 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3