gpt llm large language model

Model Card

Github

https://github.com/chi2liu/mamba-gpt-3b

Metric Value
MMLU (5-shot) 25.3
ARC (25-shot) 40.5
HellaSwag (10-shot) 64.9
TruthfulQA (0-shot) 37.1
Avg. 42.0

We use state-of-the-art Language Model Evaluation Harness to run the benchmark tests above.

Summary

We have fine-tuned the open-lama model and surpassed the original model in multiple evaluation subtasks, making it currently the best performing 3B model with comparable performance to llama-7b

Usage

To use the model with the transformers library on a machine with GPUs, first make sure you have the transformers, accelerate and torch libraries installed.

pip install transformers==4.29.2
pip install accelerate==0.19.0
pip install torch==2.0.0
import torch
from transformers import pipeline

generate_text = pipeline(
    model="CobraMamba/mamba-gpt-3b",
    torch_dtype="auto",
    trust_remote_code=True,
    use_fast=False,
    device_map={"": "cuda:0"},
)

res = generate_text(
    "Why is drinking water so healthy?",
    min_new_tokens=2,
    max_new_tokens=1024,
    do_sample=False,
    num_beams=1,
    temperature=float(0.3),
    repetition_penalty=float(1.2),
    renormalize_logits=True
)
print(res[0]["generated_text"])

You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:

print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
<|prompt|>Why is drinking water so healthy?</s><|answer|>

Alternatively, you can download the mamba_gpt_pipeline.py, store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the transformers package, this will allow you to set trust_remote_code=False.

import torch
from mamba_gpt_pipeline import MambaGPTTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(
    "CobraMamba/mamba-gpt-3b",
    use_fast=False,
    padding_side="left",
    trust_remote_code=False,
)
model = AutoModelForCausalLM.from_pretrained(
    "CobraMamba/mamba-gpt-3b",
    torch_dtype="auto",
    device_map={"": "cuda:0"},
    trust_remote_code=False,
)
generate_text = MambaGPTTextGenerationPipeline(model=model, tokenizer=tokenizer)

res = generate_text(
    "Why is drinking water so healthy?",
    min_new_tokens=2,
    max_new_tokens=1024,
    do_sample=False,
    num_beams=1,
    temperature=float(0.3),
    repetition_penalty=float(1.2),
    renormalize_logits=True
)
print(res[0]["generated_text"])

You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "CobraMamba/mamba-gpt-3b"  # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?</s><|answer|>"

tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    use_fast=False,
    trust_remote_code=False,
)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map={"": "cuda:0"},
    trust_remote_code=False,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")

# generate configuration can be modified to your needs
tokens = model.generate(
    **inputs,
    min_new_tokens=2,
    max_new_tokens=1024,
    do_sample=False,
    num_beams=1,
    temperature=float(0.3),
    repetition_penalty=float(1.2),
    renormalize_logits=True
)[0]

tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)

Model Architecture

LlamaForCausalLM(
  (model): LlamaModel(
    (embed_tokens): Embedding(32000, 4096, padding_idx=0)
    (layers): ModuleList(
      (0-31): 32 x LlamaDecoderLayer(
        (self_attn): LlamaAttention(
          (q_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (k_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (v_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (o_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (rotary_emb): LlamaRotaryEmbedding()
        )
        (mlp): LlamaMLP(
          (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
          (down_proj): Linear(in_features=11008, out_features=4096, bias=False)
          (up_proj): Linear(in_features=4096, out_features=11008, bias=False)
          (act_fn): SiLUActivation()
        )
        (input_layernorm): LlamaRMSNorm()
        (post_attention_layernorm): LlamaRMSNorm()
      )
    )
    (norm): LlamaRMSNorm()
  )
  (lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)

Evaluation

We evaluated OpenLLaMA on a wide range of tasks using lm-evaluation-harness. The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in this issue of lm-evaluation-harness. Additionally, we present the results of GPT-J, a 6B parameter model trained on the Pile dataset by EleutherAI.

The original LLaMA model was trained for 1 trillion tokens and GPT-J was trained for 500 billion tokens. We present the results in the table below. OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority of tasks, and outperforms them in some tasks.

Task/Metric finetuned-GPT 3B OpenLLaMA 3B
anli_r1/acc 0.35 0.33
anli_r2/acc 0.33 0.32
anli_r3/acc 0.35 0.35
arc_challenge/acc 0.35 0.34
arc_challenge/acc_norm 0.37 0.37
arc_easy/acc 0.71 0.69
arc_easy/acc_norm 0.65 0.65
boolq/acc 0.72 0.66
hellaswag/acc 0.49 0.43
hellaswag/acc_norm 0.66 0.67
openbookqa/acc 0.26 0.27
openbookqa/acc_norm 0.40 0.40
piqa/acc 0.76 0.75
piqa/acc_norm 0.76 0.76
record/em 0.88 0.88
record/f1 0.88 0.89
rte/acc 0.55 0.58
truthfulqa_mc/mc1 0.27 0.22
truthfulqa_mc/mc2 0.37 0.35
wic/acc 0.49 0.48
winogrande/acc 0.63 0.62
Average 0.53 0.52

We removed the task CB and WSC from our benchmark, as our model performs suspiciously well on these two tasks. We hypothesize that there could be a benchmark data contamination in the training set.

Disclaimer

Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.

By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.