image-classification vision generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

vit-base-patch16-224-food101

This model is a fine-tuned version of eslamxm/vit-base-food101 on the food101 dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Script

"cmd_list": [
        "python",
        "run_image_classification.py",
        "--model_name_or_path",
        "eslamxm/vit-base-food101",
        "--dataset_name",
        "food101",
        "--output_dir",
        "<output_dir>",
        "--overwrite_output_dir",
        "--remove_unused_columns",
        "False",
        "--do_train",
        "--do_eval",
        "--optim",
        "adamw_torch",
        "--learning_rate",
        "6e-05",
        "--num_train_epochs",
        "3",
        "--dataloader_num_workers",
        "10",
        "--per_device_train_batch_size",
        "64",
        "--gradient_accumulation_steps",
        "2",
        "--per_device_eval_batch_size",
        "128",
        "--logging_strategy",
        "steps",
        "--logging_steps",
        "10",
        "--evaluation_strategy",
        "steps",
        "--eval_steps",
        "500",
        "--save_steps",
        "500",
        "--evaluation_strategy",
        "epoch",
        "--save_strategy",
        "epoch",
        "--load_best_model_at_end",
        "False",
        "--save_total_limit",
        "1",
        "--seed",
        "42",
        "--fp16"
    ]

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3687 1.0 592 0.4044 0.8889
0.3422 2.0 1184 0.3911 0.8953
0.3808 3.0 1776 0.3856 0.8971

Framework versions