Wav2Vec2-Large-XLSR-53-Estonian
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Estonian using Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
Requirements
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
Prediction
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import numpy as np
import re
import string
import IPython.display as ipd
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"',
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
]
chars_to_mapping = {
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
}
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def normalizer(batch, chars_to_ignore, chars_to_mapping):
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
text = batch["sentence"].lower().strip()
text = text.replace("\u0307", " ").strip()
text = multiple_replace(text, chars_to_mapping)
text = remove_special_characters(text, chars_to_ignore_regex)
batch["sentence"] = text
return batch
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian").to(device)
dataset = load_dataset("common_voice", "et", split="test[:1%]")
dataset = dataset.map(
normalizer,
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
max_items = np.random.randint(0, len(result), 10).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
Output:
reference: õhulossid lagunevad ning ees ootab maapind
predicted: õhulassid lagunevad ning ees ootab maapind
---
reference: milliseks kiievisse pääsemise nimel võistlev muusik soome muusikamaastiku hetkeseisu hindab ning kas ta ka ennast sellel tulevikus tegutsemas näeb kuuled videost
predicted: milliseks gievisse pääsemise nimel võitlev muusiks soome muusikama aastiku hetke seisu hindab ning kas ta ennast selle tulevikus tegutsemast näeb kuulad videost
---
reference: näiteks kui pool seina on tehtud tekib tunne et tahaks tegelikult natuke teistsugust ja hakkame otsast peale
predicted: näiteks kui pool seine on tehtud tekib tunnetahaks tegelikult matuka teistsugust jahappanna otsast peane
---
reference: neuroesteetilised katsed näitavad et just nägude vaatlemine aktiveerib inimese aju esteetilist keskust
predicted: neuroaisteetiliselt katsed näitaval et just nägude vaatlemine aptiveerid inimese aju est eedilist keskust
---
reference: paljud inimesed kindlasti kadestavad teid kuid ei julge samamoodi vabalt võtta
predicted: paljud inimesed kindlasti kadestavadteid kuid ei julge sama moodi vabalt võtta
---
reference: parem on otsida pileteid inkognito veebi kaudu
predicted: parem on otsida pileteid ning kognitu veebikaudu
---
reference: ja vot siin ma jäin vaikseks
predicted: ja vat siisma ja invaikseks
---
reference: mida sa iseendale juubeli puhul soovid
predicted: mida saise endale jubeli puhul soovid
---
reference: kuumuse ja kõrge temperatuuri tõttu kuivas tühjadel karjamaadel rohi mis muutus kergesti süttivaks
predicted: kuumuse ja kõrge temperatuuri tõttu kuivast ühjadal karjamaadel rohi mis muutus kergesti süttivaks
---
reference: ilmselt on inimesi kelle jaoks on see hea lahendus
predicted: ilmselt on inimesi kelle jaoks on see hea lahendus
---
Evaluation
The model can be evaluated as follows on the Estonian test data of Common Voice.
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import numpy as np
import re
import string
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"',
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
]
chars_to_mapping = {
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
}
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def normalizer(batch, chars_to_ignore, chars_to_mapping):
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
text = batch["sentence"].lower().strip()
text = text.replace("\u0307", " ").strip()
text = multiple_replace(text, chars_to_mapping)
text = remove_special_characters(text, chars_to_ignore_regex)
batch["sentence"] = text
return batch
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian").to(device)
dataset = load_dataset("common_voice", "et", split="test")
dataset = dataset.map(
normalizer,
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
Test Result:
- WER: 33.93%
Training & Report
The Common Voice train
, validation
datasets were used for training.
You can see the training states here
The script used for training can be found here