<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
gpt2-vietnamese
This model is a fine-tuned version of NlpHUST/gpt2-vietnamese on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.7042
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2000
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.03 | 500 | 3.5209 |
3.5302 | 0.06 | 1000 | 3.3902 |
3.5302 | 0.09 | 1500 | 3.2947 |
3.2733 | 0.12 | 2000 | 3.2116 |
3.2733 | 0.15 | 2500 | 3.1511 |
3.1431 | 0.18 | 3000 | 3.1054 |
3.1431 | 0.2 | 3500 | 3.0684 |
3.0471 | 0.23 | 4000 | 3.0372 |
3.0471 | 0.26 | 4500 | 3.0103 |
2.9957 | 0.29 | 5000 | 2.9863 |
2.9957 | 0.32 | 5500 | 2.9652 |
2.9472 | 0.35 | 6000 | 2.9452 |
2.9472 | 0.38 | 6500 | 2.9281 |
2.9164 | 0.41 | 7000 | 2.9123 |
2.9164 | 0.44 | 7500 | 2.8982 |
2.8991 | 0.47 | 8000 | 2.8856 |
2.8991 | 0.5 | 8500 | 2.8732 |
2.8672 | 0.53 | 9000 | 2.8621 |
2.8672 | 0.56 | 9500 | 2.8507 |
2.8456 | 0.59 | 10000 | 2.8411 |
2.8456 | 0.61 | 10500 | 2.8318 |
2.8074 | 0.64 | 11000 | 2.8234 |
2.8074 | 0.67 | 11500 | 2.8151 |
2.7959 | 0.7 | 12000 | 2.8077 |
2.7959 | 0.73 | 12500 | 2.8006 |
2.7918 | 0.76 | 13000 | 2.7943 |
2.7918 | 0.79 | 13500 | 2.7876 |
2.7773 | 0.82 | 14000 | 2.7818 |
2.7773 | 0.85 | 14500 | 2.7760 |
2.7648 | 0.88 | 15000 | 2.7706 |
2.7648 | 0.91 | 15500 | 2.7656 |
2.7559 | 0.94 | 16000 | 2.7611 |
2.7559 | 0.97 | 16500 | 2.7561 |
2.7461 | 1.0 | 17000 | 2.7521 |
2.7461 | 1.02 | 17500 | 2.7493 |
2.696 | 1.05 | 18000 | 2.7454 |
2.696 | 1.08 | 18500 | 2.7419 |
2.6808 | 1.11 | 19000 | 2.7390 |
2.6808 | 1.14 | 19500 | 2.7362 |
2.6803 | 1.17 | 20000 | 2.7335 |
2.6803 | 1.2 | 20500 | 2.7304 |
2.6753 | 1.23 | 21000 | 2.7278 |
2.6753 | 1.26 | 21500 | 2.7251 |
2.6732 | 1.29 | 22000 | 2.7228 |
2.6732 | 1.32 | 22500 | 2.7205 |
2.6687 | 1.35 | 23000 | 2.7189 |
2.6687 | 1.38 | 23500 | 2.7170 |
2.6667 | 1.41 | 24000 | 2.7154 |
2.6667 | 1.43 | 24500 | 2.7138 |
2.655 | 1.46 | 25000 | 2.7125 |
2.655 | 1.49 | 25500 | 2.7113 |
2.6592 | 1.52 | 26000 | 2.7100 |
2.6592 | 1.55 | 26500 | 2.7091 |
2.6435 | 1.58 | 27000 | 2.7084 |
2.6435 | 1.61 | 27500 | 2.7076 |
2.6577 | 1.64 | 28000 | 2.7071 |
2.6577 | 1.67 | 28500 | 2.7063 |
2.6487 | 1.7 | 29000 | 2.7060 |
2.6487 | 1.73 | 29500 | 2.7054 |
2.6596 | 1.76 | 30000 | 2.7052 |
2.6596 | 1.79 | 30500 | 2.7049 |
2.6513 | 1.82 | 31000 | 2.7046 |
2.6513 | 1.84 | 31500 | 2.7046 |
2.6564 | 1.87 | 32000 | 2.7044 |
2.6564 | 1.9 | 32500 | 2.7043 |
2.6532 | 1.93 | 33000 | 2.7043 |
2.6532 | 1.96 | 33500 | 2.7042 |
2.6582 | 1.99 | 34000 | 2.7042 |
Framework versions
- Transformers 4.30.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3