<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
bert_12_layer_model_v1_complete_training_new_wt_init_48_frz
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2686
- Accuracy: 0.5754
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
5.7497 | 0.05 | 10000 | 5.6455 | 0.1803 |
5.0738 | 0.11 | 20000 | 4.7886 | 0.2740 |
4.6823 | 0.16 | 30000 | 4.3914 | 0.3131 |
4.3942 | 0.22 | 40000 | 4.0874 | 0.3480 |
3.9186 | 0.27 | 50000 | 3.6561 | 0.3997 |
3.5977 | 0.33 | 60000 | 3.3709 | 0.4341 |
3.3917 | 0.38 | 70000 | 3.1996 | 0.4550 |
3.2539 | 0.44 | 80000 | 3.0836 | 0.4692 |
3.1642 | 0.49 | 90000 | 2.9976 | 0.4799 |
3.0815 | 0.55 | 100000 | 2.9278 | 0.4888 |
3.0111 | 0.6 | 110000 | 2.8682 | 0.4963 |
2.9572 | 0.66 | 120000 | 2.8223 | 0.5022 |
2.916 | 0.71 | 130000 | 2.7781 | 0.5077 |
2.8748 | 0.76 | 140000 | 2.7422 | 0.5121 |
2.8493 | 0.82 | 150000 | 2.7090 | 0.5167 |
2.8057 | 0.87 | 160000 | 2.6750 | 0.5207 |
2.7837 | 0.93 | 170000 | 2.6563 | 0.5236 |
2.7467 | 0.98 | 180000 | 2.6266 | 0.5271 |
2.7348 | 1.04 | 190000 | 2.6050 | 0.5303 |
2.7011 | 1.09 | 200000 | 2.5818 | 0.5330 |
2.6782 | 1.15 | 210000 | 2.5629 | 0.5356 |
2.658 | 1.2 | 220000 | 2.5464 | 0.5382 |
2.6375 | 1.26 | 230000 | 2.5260 | 0.5406 |
2.6257 | 1.31 | 240000 | 2.5065 | 0.5431 |
2.6122 | 1.37 | 250000 | 2.4934 | 0.5449 |
2.5836 | 1.42 | 260000 | 2.4741 | 0.5472 |
2.5706 | 1.47 | 270000 | 2.4647 | 0.5486 |
2.5536 | 1.53 | 280000 | 2.4519 | 0.5506 |
2.5403 | 1.58 | 290000 | 2.4376 | 0.5526 |
2.538 | 1.64 | 300000 | 2.4244 | 0.5538 |
2.5152 | 1.69 | 310000 | 2.4085 | 0.5558 |
2.4968 | 1.75 | 320000 | 2.4027 | 0.5576 |
2.4894 | 1.8 | 330000 | 2.3890 | 0.5586 |
2.4776 | 1.86 | 340000 | 2.3752 | 0.5606 |
2.476 | 1.91 | 350000 | 2.3631 | 0.5622 |
2.4541 | 1.97 | 360000 | 2.3559 | 0.5632 |
2.4474 | 2.02 | 370000 | 2.3448 | 0.5647 |
2.4434 | 2.08 | 380000 | 2.3349 | 0.5660 |
2.4324 | 2.13 | 390000 | 2.3300 | 0.5669 |
2.4264 | 2.18 | 400000 | 2.3182 | 0.5684 |
2.4034 | 2.24 | 410000 | 2.3082 | 0.5699 |
2.4034 | 2.29 | 420000 | 2.3007 | 0.5710 |
2.3946 | 2.35 | 430000 | 2.2905 | 0.5718 |
2.3816 | 2.4 | 440000 | 2.2830 | 0.5732 |
2.3774 | 2.46 | 450000 | 2.2771 | 0.5738 |
2.3651 | 2.51 | 460000 | 2.2686 | 0.5754 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.13.0
- Tokenizers 0.13.3