generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

bert-base-uncased_winobias_classifieronly

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Tp Tn Fp Fn
0.7029 0.8 20 0.6940 0.4867 0.1951 0.2917 0.2083 0.3049
0.6922 1.6 40 0.6950 0.5082 0.4293 0.0789 0.4211 0.0707
0.6953 2.4 60 0.6955 0.5019 0.4482 0.0537 0.4463 0.0518
0.6955 3.2 80 0.6940 0.5038 0.3365 0.1673 0.3327 0.1635
0.7066 4.0 100 0.6941 0.5 0.3630 0.1370 0.3630 0.1370
0.6914 4.8 120 0.6939 0.4880 0.1824 0.3056 0.1944 0.3176
0.69 5.6 140 0.6943 0.5025 0.3977 0.1048 0.3952 0.1023
0.6975 6.4 160 0.6938 0.5032 0.2342 0.2689 0.2311 0.2658
0.6935 7.2 180 0.6938 0.4968 0.2247 0.2721 0.2279 0.2753
0.7033 8.0 200 0.6941 0.5019 0.3693 0.1326 0.3674 0.1307
0.7004 8.8 220 0.6938 0.5051 0.3138 0.1913 0.3087 0.1862
0.6978 9.6 240 0.6939 0.5019 0.2588 0.2431 0.2569 0.2412
0.7005 10.4 260 0.6940 0.5063 0.3289 0.1774 0.3226 0.1711
0.7006 11.2 280 0.6940 0.5 0.2355 0.2645 0.2355 0.2645
0.6978 12.0 300 0.6942 0.5051 0.3649 0.1402 0.3598 0.1351
0.6938 12.8 320 0.6940 0.5025 0.2582 0.2443 0.2557 0.2418
0.7024 13.6 340 0.6946 0.4962 0.1199 0.3763 0.1237 0.3801
0.7002 14.4 360 0.6944 0.4975 0.4110 0.0865 0.4135 0.0890
0.6952 15.2 380 0.6939 0.5076 0.2753 0.2323 0.2677 0.2247
0.6936 16.0 400 0.6943 0.4848 0.1496 0.3352 0.1648 0.3504
0.6983 16.8 420 0.6940 0.4962 0.1970 0.2992 0.2008 0.3030
0.6944 17.6 440 0.6939 0.4956 0.2241 0.2715 0.2285 0.2759
0.6984 18.4 460 0.6938 0.5120 0.3074 0.2045 0.2955 0.1926
0.6933 19.2 480 0.6937 0.5013 0.3504 0.1509 0.3491 0.1496
0.6918 20.0 500 0.6937 0.5032 0.3466 0.1566 0.3434 0.1534
0.6989 20.8 520 0.6936 0.4987 0.3441 0.1547 0.3453 0.1559
0.6939 21.6 540 0.6936 0.5013 0.3327 0.1686 0.3314 0.1673
0.6982 22.4 560 0.6936 0.5095 0.3125 0.1970 0.3030 0.1875
0.6924 23.2 580 0.6937 0.5044 0.3674 0.1370 0.3630 0.1326
0.6975 24.0 600 0.6936 0.5013 0.3346 0.1667 0.3333 0.1654
0.6934 24.8 620 0.6937 0.5013 0.3718 0.1294 0.3706 0.1282
0.6929 25.6 640 0.6934 0.4975 0.2064 0.2910 0.2090 0.2936
0.7 26.4 660 0.6934 0.5114 0.2645 0.2468 0.2532 0.2355
0.6994 27.2 680 0.6933 0.5069 0.2879 0.2191 0.2809 0.2121
0.6992 28.0 700 0.6933 0.5145 0.3157 0.1989 0.3011 0.1843
0.6965 28.8 720 0.6933 0.5095 0.2828 0.2266 0.2734 0.2172
0.6978 29.6 740 0.6936 0.5019 0.3807 0.1212 0.3788 0.1193
0.7004 30.4 760 0.6934 0.5019 0.3251 0.1768 0.3232 0.1749
0.695 31.2 780 0.6934 0.5120 0.2866 0.2254 0.2746 0.2134
0.6949 32.0 800 0.6935 0.5025 0.3491 0.1534 0.3466 0.1509
0.6929 32.8 820 0.6934 0.5019 0.3472 0.1547 0.3453 0.1528
0.6953 33.6 840 0.6933 0.5126 0.2746 0.2380 0.2620 0.2254
0.6967 34.4 860 0.6935 0.5038 0.3687 0.1351 0.3649 0.1313
0.6921 35.2 880 0.6937 0.5051 0.4040 0.1010 0.3990 0.0960
0.6973 36.0 900 0.6936 0.5013 0.3788 0.1225 0.3775 0.1212
0.7016 36.8 920 0.6933 0.5038 0.3283 0.1755 0.3245 0.1717
0.6927 37.6 940 0.6934 0.5013 0.3624 0.1389 0.3611 0.1376
0.6966 38.4 960 0.6934 0.5038 0.3422 0.1616 0.3384 0.1578
0.6981 39.2 980 0.6933 0.5038 0.3207 0.1831 0.3169 0.1793
0.6964 40.0 1000 0.6934 0.5025 0.3403 0.1622 0.3378 0.1597
0.6965 40.8 1020 0.6933 0.5025 0.3207 0.1818 0.3182 0.1793
0.6981 41.6 1040 0.6933 0.5177 0.3087 0.2090 0.2910 0.1913
0.7021 42.4 1060 0.6933 0.5164 0.2828 0.2336 0.2664 0.2172
0.6948 43.2 1080 0.6933 0.5063 0.2544 0.2519 0.2481 0.2456
0.695 44.0 1100 0.6933 0.5044 0.2519 0.2525 0.2475 0.2481
0.692 44.8 1120 0.6933 0.5158 0.2923 0.2235 0.2765 0.2077
0.6925 45.6 1140 0.6933 0.5158 0.3062 0.2096 0.2904 0.1938
0.6983 46.4 1160 0.6933 0.5063 0.3213 0.1850 0.3150 0.1787
0.6953 47.2 1180 0.6933 0.5044 0.3258 0.1787 0.3213 0.1742
0.693 48.0 1200 0.6933 0.5063 0.3201 0.1862 0.3138 0.1799
0.6944 48.8 1220 0.6933 0.5095 0.3188 0.1907 0.3093 0.1812
0.6939 49.6 1240 0.6933 0.5114 0.3112 0.2001 0.2999 0.1888

Framework versions