<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
pegasus-text-simplification_1e4_adafactor_wikilarge_20epici
This model is a fine-tuned version of google/pegasus-x-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4783
- Rouge1: 72.0576
- Rouge2: 53.6457
- Rougel: 66.9028
- Rougelsum: 66.9302
- Gen Len: 21.9895
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.5187 | 1.0 | 1163 | 0.4502 | 73.6687 | 54.9499 | 68.2544 | 68.2568 | 23.6492 |
0.4798 | 2.0 | 2326 | 0.4472 | 73.8465 | 55.5415 | 68.5292 | 68.5457 | 23.4241 |
0.4542 | 3.0 | 3489 | 0.4456 | 74.0031 | 55.521 | 68.7023 | 68.6871 | 23.0838 |
0.4376 | 4.0 | 4652 | 0.4476 | 73.4239 | 55.0591 | 68.1931 | 68.1833 | 22.9529 |
0.4226 | 5.0 | 5815 | 0.4484 | 73.1859 | 54.7558 | 67.8843 | 67.9234 | 22.6702 |
0.4108 | 6.0 | 6978 | 0.4517 | 72.8602 | 54.3813 | 67.5761 | 67.6266 | 22.356 |
0.3993 | 7.0 | 8141 | 0.4532 | 73.0413 | 54.7254 | 67.7802 | 67.8065 | 22.5131 |
0.391 | 8.0 | 9304 | 0.4590 | 72.9448 | 54.3763 | 67.689 | 67.6712 | 22.5079 |
0.3844 | 9.0 | 10467 | 0.4579 | 72.6204 | 54.107 | 67.3903 | 67.3863 | 22.2775 |
0.3773 | 10.0 | 11630 | 0.4606 | 72.2651 | 53.6432 | 66.9958 | 67.0199 | 22.2251 |
0.3671 | 11.0 | 12793 | 0.4633 | 72.7308 | 54.2544 | 67.3945 | 67.4726 | 22.0 |
0.3605 | 12.0 | 13956 | 0.4675 | 72.5548 | 53.834 | 67.2447 | 67.2855 | 22.555 |
0.3588 | 13.0 | 15119 | 0.4686 | 71.9681 | 53.2995 | 66.7298 | 66.779 | 22.089 |
0.353 | 14.0 | 16282 | 0.4694 | 71.9544 | 53.4137 | 66.7585 | 66.7915 | 22.1099 |
0.3474 | 15.0 | 17445 | 0.4738 | 72.0006 | 53.3351 | 66.7153 | 66.7157 | 22.1728 |
0.3441 | 16.0 | 18608 | 0.4749 | 72.0188 | 53.5242 | 66.7556 | 66.7977 | 22.0733 |
0.3431 | 17.0 | 19771 | 0.4756 | 71.91 | 53.0955 | 66.5612 | 66.5038 | 22.1361 |
0.3385 | 18.0 | 20934 | 0.4769 | 71.9702 | 53.5832 | 66.915 | 66.9436 | 22.0157 |
0.3384 | 19.0 | 22097 | 0.4778 | 72.0563 | 53.7153 | 66.9998 | 67.061 | 22.0314 |
0.3368 | 20.0 | 23260 | 0.4783 | 72.0576 | 53.6457 | 66.9028 | 66.9302 | 21.9895 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3