<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
t5_qg_2
This model is a fine-tuned version of Gayathri142214002/t5_qg_1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3823
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8817 | 0.03 | 10 | 0.8651 |
0.8338 | 0.06 | 20 | 0.8145 |
0.9069 | 0.09 | 30 | 0.7292 |
0.8168 | 0.12 | 40 | 0.6823 |
0.6639 | 0.15 | 50 | 0.6587 |
0.6897 | 0.18 | 60 | 0.6266 |
0.6563 | 0.21 | 70 | 0.6206 |
0.7409 | 0.24 | 80 | 0.5953 |
0.7765 | 0.27 | 90 | 0.5762 |
0.6625 | 0.3 | 100 | 0.5683 |
0.5672 | 0.33 | 110 | 0.5687 |
0.5073 | 0.36 | 120 | 0.5722 |
0.5656 | 0.39 | 130 | 0.5583 |
0.5908 | 0.42 | 140 | 0.5357 |
0.6982 | 0.45 | 150 | 0.5139 |
0.5616 | 0.48 | 160 | 0.4979 |
0.6185 | 0.51 | 170 | 0.4837 |
0.5247 | 0.54 | 180 | 0.4845 |
0.5561 | 0.57 | 190 | 0.4848 |
0.5342 | 0.6 | 200 | 0.4802 |
0.4285 | 0.63 | 210 | 0.4893 |
0.4691 | 0.66 | 220 | 0.4944 |
0.483 | 0.69 | 230 | 0.4913 |
0.607 | 0.72 | 240 | 0.4877 |
0.5613 | 0.75 | 250 | 0.4692 |
0.5271 | 0.78 | 260 | 0.4566 |
0.4606 | 0.81 | 270 | 0.4692 |
0.52 | 0.84 | 280 | 0.4777 |
0.4936 | 0.87 | 290 | 0.4673 |
0.5076 | 0.9 | 300 | 0.4637 |
0.4497 | 0.93 | 310 | 0.4702 |
0.3881 | 0.96 | 320 | 0.4821 |
0.4673 | 0.99 | 330 | 0.4641 |
0.4199 | 1.02 | 340 | 0.4639 |
0.4399 | 1.05 | 350 | 0.4751 |
0.4949 | 1.08 | 360 | 0.4808 |
0.4312 | 1.11 | 370 | 0.4795 |
0.4369 | 1.14 | 380 | 0.4809 |
0.4733 | 1.17 | 390 | 0.4661 |
0.4259 | 1.2 | 400 | 0.4490 |
0.4345 | 1.23 | 410 | 0.4440 |
0.4075 | 1.26 | 420 | 0.4519 |
0.4423 | 1.29 | 430 | 0.4503 |
0.3973 | 1.32 | 440 | 0.4466 |
0.3671 | 1.35 | 450 | 0.4481 |
0.4627 | 1.38 | 460 | 0.4431 |
0.435 | 1.41 | 470 | 0.4454 |
0.4073 | 1.44 | 480 | 0.4470 |
0.4309 | 1.47 | 490 | 0.4398 |
0.4392 | 1.5 | 500 | 0.4333 |
0.4372 | 1.53 | 510 | 0.4270 |
0.4842 | 1.56 | 520 | 0.4329 |
0.4509 | 1.59 | 530 | 0.4343 |
0.4836 | 1.62 | 540 | 0.4324 |
0.3892 | 1.65 | 550 | 0.4187 |
0.3473 | 1.68 | 560 | 0.4163 |
0.4382 | 1.71 | 570 | 0.4161 |
0.365 | 1.74 | 580 | 0.4102 |
0.4001 | 1.77 | 590 | 0.4122 |
0.3835 | 1.8 | 600 | 0.4162 |
0.432 | 1.83 | 610 | 0.4147 |
0.4152 | 1.86 | 620 | 0.4254 |
0.4328 | 1.89 | 630 | 0.4319 |
0.4156 | 1.92 | 640 | 0.4210 |
0.3748 | 1.95 | 650 | 0.4182 |
0.449 | 1.98 | 660 | 0.4155 |
0.4083 | 2.01 | 670 | 0.4145 |
0.3137 | 2.04 | 680 | 0.4187 |
0.3838 | 2.07 | 690 | 0.4220 |
0.4279 | 2.1 | 700 | 0.4105 |
0.3715 | 2.13 | 710 | 0.4113 |
0.3207 | 2.16 | 720 | 0.4169 |
0.3755 | 2.19 | 730 | 0.4207 |
0.3726 | 2.22 | 740 | 0.4280 |
0.4083 | 2.25 | 750 | 0.4389 |
0.3895 | 2.28 | 760 | 0.4378 |
0.3834 | 2.31 | 770 | 0.4327 |
0.3968 | 2.34 | 780 | 0.4292 |
0.3871 | 2.37 | 790 | 0.4223 |
0.4057 | 2.4 | 800 | 0.4232 |
0.3633 | 2.43 | 810 | 0.4161 |
0.3998 | 2.46 | 820 | 0.4107 |
0.3789 | 2.49 | 830 | 0.4080 |
0.4204 | 2.52 | 840 | 0.4126 |
0.401 | 2.55 | 850 | 0.4094 |
0.4049 | 2.58 | 860 | 0.3987 |
0.4129 | 2.61 | 870 | 0.3941 |
0.3414 | 2.64 | 880 | 0.3951 |
0.4505 | 2.67 | 890 | 0.3942 |
0.407 | 2.7 | 900 | 0.3985 |
0.3854 | 2.73 | 910 | 0.4011 |
0.4164 | 2.76 | 920 | 0.4025 |
0.4032 | 2.79 | 930 | 0.4005 |
0.3638 | 2.82 | 940 | 0.4002 |
0.3799 | 2.85 | 950 | 0.4008 |
0.4283 | 2.89 | 960 | 0.3955 |
0.3696 | 2.92 | 970 | 0.3947 |
0.3766 | 2.95 | 980 | 0.3959 |
0.3956 | 2.98 | 990 | 0.3950 |
0.3816 | 3.01 | 1000 | 0.3950 |
0.3108 | 3.04 | 1010 | 0.3934 |
0.3578 | 3.07 | 1020 | 0.3970 |
0.3519 | 3.1 | 1030 | 0.4019 |
0.3121 | 3.13 | 1040 | 0.4065 |
0.3845 | 3.16 | 1050 | 0.4081 |
0.342 | 3.19 | 1060 | 0.4075 |
0.3573 | 3.22 | 1070 | 0.4093 |
0.3673 | 3.25 | 1080 | 0.4089 |
0.3596 | 3.28 | 1090 | 0.4084 |
0.3474 | 3.31 | 1100 | 0.4089 |
0.3966 | 3.34 | 1110 | 0.4072 |
0.3813 | 3.37 | 1120 | 0.4046 |
0.3557 | 3.4 | 1130 | 0.4067 |
0.4239 | 3.43 | 1140 | 0.4052 |
0.3938 | 3.46 | 1150 | 0.3973 |
0.3686 | 3.49 | 1160 | 0.3980 |
0.3763 | 3.52 | 1170 | 0.3954 |
0.3754 | 3.55 | 1180 | 0.3936 |
0.3656 | 3.58 | 1190 | 0.3937 |
0.3383 | 3.61 | 1200 | 0.3942 |
0.3984 | 3.64 | 1210 | 0.3974 |
0.3814 | 3.67 | 1220 | 0.3995 |
0.3309 | 3.7 | 1230 | 0.3980 |
0.347 | 3.73 | 1240 | 0.3971 |
0.3727 | 3.76 | 1250 | 0.3958 |
0.381 | 3.79 | 1260 | 0.3950 |
0.3824 | 3.82 | 1270 | 0.3946 |
0.3971 | 3.85 | 1280 | 0.3941 |
0.3634 | 3.88 | 1290 | 0.3950 |
0.3501 | 3.91 | 1300 | 0.3939 |
0.327 | 3.94 | 1310 | 0.3927 |
0.3313 | 3.97 | 1320 | 0.3978 |
0.378 | 4.0 | 1330 | 0.4029 |
0.3376 | 4.03 | 1340 | 0.4008 |
0.3636 | 4.06 | 1350 | 0.3977 |
0.3064 | 4.09 | 1360 | 0.3976 |
0.4012 | 4.12 | 1370 | 0.3981 |
0.2932 | 4.15 | 1380 | 0.3991 |
0.3805 | 4.18 | 1390 | 0.3996 |
0.3438 | 4.21 | 1400 | 0.3996 |
0.3413 | 4.24 | 1410 | 0.4001 |
0.365 | 4.27 | 1420 | 0.3981 |
0.3769 | 4.3 | 1430 | 0.3960 |
0.3552 | 4.33 | 1440 | 0.3940 |
0.3328 | 4.36 | 1450 | 0.3937 |
0.3719 | 4.39 | 1460 | 0.3929 |
0.3607 | 4.42 | 1470 | 0.3933 |
0.3117 | 4.45 | 1480 | 0.3942 |
0.3522 | 4.48 | 1490 | 0.3964 |
0.375 | 4.51 | 1500 | 0.3979 |
0.3337 | 4.54 | 1510 | 0.3985 |
0.3549 | 4.57 | 1520 | 0.3959 |
0.4021 | 4.6 | 1530 | 0.3928 |
0.3217 | 4.63 | 1540 | 0.3895 |
0.3533 | 4.66 | 1550 | 0.3881 |
0.3564 | 4.69 | 1560 | 0.3882 |
0.3281 | 4.72 | 1570 | 0.3891 |
0.3474 | 4.75 | 1580 | 0.3897 |
0.3447 | 4.78 | 1590 | 0.3910 |
0.318 | 4.81 | 1600 | 0.3928 |
0.3414 | 4.84 | 1610 | 0.3942 |
0.3311 | 4.87 | 1620 | 0.3940 |
0.2932 | 4.9 | 1630 | 0.3921 |
0.3456 | 4.93 | 1640 | 0.3886 |
0.3462 | 4.96 | 1650 | 0.3851 |
0.3599 | 4.99 | 1660 | 0.3847 |
0.2819 | 5.02 | 1670 | 0.3864 |
0.3026 | 5.05 | 1680 | 0.3899 |
0.3272 | 5.08 | 1690 | 0.3909 |
0.3466 | 5.11 | 1700 | 0.3911 |
0.3279 | 5.14 | 1710 | 0.3912 |
0.3317 | 5.17 | 1720 | 0.3908 |
0.3523 | 5.2 | 1730 | 0.3906 |
0.3044 | 5.23 | 1740 | 0.3911 |
0.3361 | 5.26 | 1750 | 0.3902 |
0.3303 | 5.29 | 1760 | 0.3891 |
0.351 | 5.32 | 1770 | 0.3887 |
0.3093 | 5.35 | 1780 | 0.3904 |
0.3773 | 5.38 | 1790 | 0.3900 |
0.3302 | 5.41 | 1800 | 0.3901 |
0.303 | 5.44 | 1810 | 0.3911 |
0.3131 | 5.47 | 1820 | 0.3914 |
0.3483 | 5.5 | 1830 | 0.3907 |
0.3046 | 5.53 | 1840 | 0.3902 |
0.3794 | 5.56 | 1850 | 0.3898 |
0.3228 | 5.59 | 1860 | 0.3892 |
0.3268 | 5.62 | 1870 | 0.3888 |
0.3602 | 5.65 | 1880 | 0.3869 |
0.3655 | 5.68 | 1890 | 0.3854 |
0.3168 | 5.71 | 1900 | 0.3844 |
0.3359 | 5.74 | 1910 | 0.3840 |
0.314 | 5.77 | 1920 | 0.3841 |
0.3428 | 5.8 | 1930 | 0.3843 |
0.3504 | 5.83 | 1940 | 0.3835 |
0.3342 | 5.86 | 1950 | 0.3831 |
0.3474 | 5.89 | 1960 | 0.3828 |
0.3453 | 5.92 | 1970 | 0.3821 |
0.2968 | 5.95 | 1980 | 0.3829 |
0.3402 | 5.98 | 1990 | 0.3826 |
0.3401 | 6.01 | 2000 | 0.3819 |
0.3282 | 6.04 | 2010 | 0.3817 |
0.3265 | 6.07 | 2020 | 0.3821 |
0.3265 | 6.1 | 2030 | 0.3836 |
0.3189 | 6.13 | 2040 | 0.3841 |
0.2829 | 6.16 | 2050 | 0.3847 |
0.341 | 6.19 | 2060 | 0.3855 |
0.307 | 6.22 | 2070 | 0.3858 |
0.3037 | 6.25 | 2080 | 0.3853 |
0.2908 | 6.28 | 2090 | 0.3853 |
0.3204 | 6.31 | 2100 | 0.3856 |
0.3103 | 6.34 | 2110 | 0.3855 |
0.3359 | 6.37 | 2120 | 0.3851 |
0.3156 | 6.4 | 2130 | 0.3842 |
0.3207 | 6.43 | 2140 | 0.3837 |
0.2814 | 6.46 | 2150 | 0.3833 |
0.2908 | 6.49 | 2160 | 0.3833 |
0.3119 | 6.52 | 2170 | 0.3836 |
0.3272 | 6.55 | 2180 | 0.3839 |
0.3309 | 6.58 | 2190 | 0.3835 |
0.3141 | 6.61 | 2200 | 0.3832 |
0.3082 | 6.64 | 2210 | 0.3831 |
0.3661 | 6.67 | 2220 | 0.3829 |
0.3256 | 6.7 | 2230 | 0.3828 |
0.2938 | 6.73 | 2240 | 0.3828 |
0.3268 | 6.76 | 2250 | 0.3827 |
0.34 | 6.79 | 2260 | 0.3827 |
0.3444 | 6.82 | 2270 | 0.3825 |
0.3251 | 6.85 | 2280 | 0.3823 |
0.277 | 6.88 | 2290 | 0.3824 |
0.2945 | 6.91 | 2300 | 0.3824 |
0.3313 | 6.94 | 2310 | 0.3824 |
0.3536 | 6.97 | 2320 | 0.3823 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3