alignment instruction tuned text generation conversation assistant

Aira-2-portuguese-1B7

Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-portuguese-1B7 is an instruction-tuned GPT-style model based on BLOOM. The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).

Check our gradio-demo in Spaces.

Details

This repository has the notebook used to train this model.

Usage

Three special tokens are used to mark the user side of the interaction and the model's response:

<|startofinstruction|>O que é um modelo de linguagem?<|endofinstruction|>Um modelo de linguagem é uma distribuição de probabilidade sobre um vocabulário.<|endofcompletion|>

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

device = torch.device("cuda"  if torch.cuda.is_available() else  "cpu")

tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-portuguese-1B7')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-portuguese-1B7')

aira.eval()
aira.to(device)

question =  input("Enter your question: ")

inputs = tokenizer(tokenizer.bos_token + question + tokenizer.eos_token, return_tensors="pt").to(device)

responses = aira.generate(**inputs,
	bos_token_id=tokenizer.bos_token_id,
	pad_token_id=tokenizer.pad_token_id,
	eos_token_id=tokenizer.eos_token_id,
	do_sample=True,
	top_k=50,
	max_length=200,
	top_p=0.95,
	temperature=0.7,
	num_return_sequences=2)

print(f"Question: 👤 {question}\n")

for i, response in  enumerate(responses):
	print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')

The model will output something like:

>>> Question: 👤 Qual a capital da Alemanha?

>>>Response 1: 🤖 A capital da Alemanha é Berlim. É a maior cidade da Alemanha e serve como centro administrativo, cultural e político da Alemanha.
>>>Response 2: 🤖 A capital da Alemanha é Berlim. É a maior cidade da Alemanha e serve como centro administrativo, cultural e político da Alemanha.

Limitations

🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.

🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.

Cite as 🤗


@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://huggingface.co/nicholasKluge/Aira-2-portuguese-1B7},
  author = {Nicholas Kluge Corrêa},
  title = {Aira},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
}

License

The Aira-2-portuguese-1B7 is licensed under the RAIL License since it is a model derived from BLOOM. See the LICENSE file for more details.