generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

distilgpt2-finetuned-python-stack-clean-answers-e200

This model is a fine-tuned version of distilgpt2 on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 28 3.2510
No log 2.0 56 3.1681
No log 3.0 84 3.0891
No log 4.0 112 3.0233
No log 5.0 140 2.9563
No log 6.0 168 2.8967
No log 7.0 196 2.8380
No log 8.0 224 2.7777
No log 9.0 252 2.7218
No log 10.0 280 2.6671
No log 11.0 308 2.6158
No log 12.0 336 2.5594
No log 13.0 364 2.5105
No log 14.0 392 2.4551
No log 15.0 420 2.4029
No log 16.0 448 2.3500
No log 17.0 476 2.2973
3.016 18.0 504 2.2479
3.016 19.0 532 2.1940
3.016 20.0 560 2.1436
3.016 21.0 588 2.0926
3.016 22.0 616 2.0419
3.016 23.0 644 1.9912
3.016 24.0 672 1.9435
3.016 25.0 700 1.8982
3.016 26.0 728 1.8483
3.016 27.0 756 1.7974
3.016 28.0 784 1.7525
3.016 29.0 812 1.7082
3.016 30.0 840 1.6610
3.016 31.0 868 1.6108
3.016 32.0 896 1.5655
3.016 33.0 924 1.5193
3.016 34.0 952 1.4757
3.016 35.0 980 1.4342
2.2411 36.0 1008 1.3863
2.2411 37.0 1036 1.3433
2.2411 38.0 1064 1.3095
2.2411 39.0 1092 1.2757
2.2411 40.0 1120 1.2278
2.2411 41.0 1148 1.1887
2.2411 42.0 1176 1.1481
2.2411 43.0 1204 1.1193
2.2411 44.0 1232 1.0711
2.2411 45.0 1260 1.0332
2.2411 46.0 1288 1.0062
2.2411 47.0 1316 0.9696
2.2411 48.0 1344 0.9358
2.2411 49.0 1372 0.9109
2.2411 50.0 1400 0.8690
2.2411 51.0 1428 0.8420
2.2411 52.0 1456 0.8111
2.2411 53.0 1484 0.7848
1.5799 54.0 1512 0.7596
1.5799 55.0 1540 0.7361
1.5799 56.0 1568 0.7081
1.5799 57.0 1596 0.6818
1.5799 58.0 1624 0.6601
1.5799 59.0 1652 0.6351
1.5799 60.0 1680 0.6145
1.5799 61.0 1708 0.5926
1.5799 62.0 1736 0.5711
1.5799 63.0 1764 0.5492
1.5799 64.0 1792 0.5251
1.5799 65.0 1820 0.5114
1.5799 66.0 1848 0.4946
1.5799 67.0 1876 0.4758
1.5799 68.0 1904 0.4628
1.5799 69.0 1932 0.4435
1.5799 70.0 1960 0.4325
1.5799 71.0 1988 0.4168
1.0863 72.0 2016 0.4025
1.0863 73.0 2044 0.3904
1.0863 74.0 2072 0.3731
1.0863 75.0 2100 0.3606
1.0863 76.0 2128 0.3451
1.0863 77.0 2156 0.3387
1.0863 78.0 2184 0.3277
1.0863 79.0 2212 0.3160
1.0863 80.0 2240 0.3108
1.0863 81.0 2268 0.2980
1.0863 82.0 2296 0.2897
1.0863 83.0 2324 0.2814
1.0863 84.0 2352 0.2715
1.0863 85.0 2380 0.2607
1.0863 86.0 2408 0.2521
1.0863 87.0 2436 0.2482
1.0863 88.0 2464 0.2386
1.0863 89.0 2492 0.2347
0.7543 90.0 2520 0.2231
0.7543 91.0 2548 0.2205
0.7543 92.0 2576 0.2135
0.7543 93.0 2604 0.2081
0.7543 94.0 2632 0.2018
0.7543 95.0 2660 0.1956
0.7543 96.0 2688 0.1910
0.7543 97.0 2716 0.1855
0.7543 98.0 2744 0.1806
0.7543 99.0 2772 0.1768
0.7543 100.0 2800 0.1715
0.7543 101.0 2828 0.1687
0.7543 102.0 2856 0.1649
0.7543 103.0 2884 0.1629
0.7543 104.0 2912 0.1570
0.7543 105.0 2940 0.1563
0.7543 106.0 2968 0.1502
0.7543 107.0 2996 0.1486
0.5478 108.0 3024 0.1443
0.5478 109.0 3052 0.1408
0.5478 110.0 3080 0.1389
0.5478 111.0 3108 0.1366
0.5478 112.0 3136 0.1338
0.5478 113.0 3164 0.1304
0.5478 114.0 3192 0.1290
0.5478 115.0 3220 0.1264
0.5478 116.0 3248 0.1234
0.5478 117.0 3276 0.1212
0.5478 118.0 3304 0.1197
0.5478 119.0 3332 0.1185
0.5478 120.0 3360 0.1159
0.5478 121.0 3388 0.1130
0.5478 122.0 3416 0.1125
0.5478 123.0 3444 0.1106
0.5478 124.0 3472 0.1087
0.4258 125.0 3500 0.1077
0.4258 126.0 3528 0.1068
0.4258 127.0 3556 0.1048
0.4258 128.0 3584 0.1039
0.4258 129.0 3612 0.1022
0.4258 130.0 3640 0.1002
0.4258 131.0 3668 0.0987
0.4258 132.0 3696 0.0980
0.4258 133.0 3724 0.0973
0.4258 134.0 3752 0.0955
0.4258 135.0 3780 0.0951
0.4258 136.0 3808 0.0937
0.4258 137.0 3836 0.0932
0.4258 138.0 3864 0.0920
0.4258 139.0 3892 0.0908
0.4258 140.0 3920 0.0903
0.4258 141.0 3948 0.0889
0.4258 142.0 3976 0.0883
0.3496 143.0 4004 0.0879
0.3496 144.0 4032 0.0872
0.3496 145.0 4060 0.0865
0.3496 146.0 4088 0.0852
0.3496 147.0 4116 0.0849
0.3496 148.0 4144 0.0843
0.3496 149.0 4172 0.0836
0.3496 150.0 4200 0.0832
0.3496 151.0 4228 0.0822
0.3496 152.0 4256 0.0817
0.3496 153.0 4284 0.0813
0.3496 154.0 4312 0.0805
0.3496 155.0 4340 0.0799
0.3496 156.0 4368 0.0796
0.3496 157.0 4396 0.0789
0.3496 158.0 4424 0.0784
0.3496 159.0 4452 0.0781
0.3496 160.0 4480 0.0777
0.3045 161.0 4508 0.0776
0.3045 162.0 4536 0.0771
0.3045 163.0 4564 0.0762
0.3045 164.0 4592 0.0762
0.3045 165.0 4620 0.0763
0.3045 166.0 4648 0.0758
0.3045 167.0 4676 0.0754
0.3045 168.0 4704 0.0750
0.3045 169.0 4732 0.0748
0.3045 170.0 4760 0.0746
0.3045 171.0 4788 0.0742
0.3045 172.0 4816 0.0740
0.3045 173.0 4844 0.0735
0.3045 174.0 4872 0.0735
0.3045 175.0 4900 0.0732
0.3045 176.0 4928 0.0728
0.3045 177.0 4956 0.0724
0.3045 178.0 4984 0.0723
0.2786 179.0 5012 0.0721
0.2786 180.0 5040 0.0719
0.2786 181.0 5068 0.0717
0.2786 182.0 5096 0.0715
0.2786 183.0 5124 0.0714
0.2786 184.0 5152 0.0713
0.2786 185.0 5180 0.0712
0.2786 186.0 5208 0.0710
0.2786 187.0 5236 0.0707
0.2786 188.0 5264 0.0705
0.2786 189.0 5292 0.0704
0.2786 190.0 5320 0.0704
0.2786 191.0 5348 0.0704
0.2786 192.0 5376 0.0702
0.2786 193.0 5404 0.0703
0.2786 194.0 5432 0.0702
0.2786 195.0 5460 0.0702
0.2786 196.0 5488 0.0701
0.2633 197.0 5516 0.0701
0.2633 198.0 5544 0.0701
0.2633 199.0 5572 0.0700
0.2633 200.0 5600 0.0700

Framework versions