DISTILBERT π + Typo Detection ββββ
distilbert-base-multilingual-cased fine-tuned on GitHub Typo Corpus for typo detection (using NER style)
Details of the downstream task (Typo detection as NER)
-
Dataset: GitHub Typo Corpus π for 15 languages
-
Fine-tune script on NER dataset provided by Huggingface ποΈββοΈ
Metrics on test set π
Metric | # score |
---|---|
F1 | 93.51 |
Precision | 96.08 |
Recall | 91.06 |
Model in action π¨
Fast usage with pipelines π§ͺ
from transformers import pipeline
typo_checker = pipeline(
"ner",
model="mrm8488/distilbert-base-multi-cased-finetuned-typo-detection",
tokenizer="mrm8488/distilbert-base-multi-cased-finetuned-typo-detection"
)
result = typo_checker("Adddd validation midelware")
result[1:-1]
# Output:
[{'entity': 'ok', 'score': 0.7128152847290039, 'word': 'add'},
{'entity': 'typo', 'score': 0.5388424396514893, 'word': '##dd'},
{'entity': 'ok', 'score': 0.94792640209198, 'word': 'validation'},
{'entity': 'typo', 'score': 0.5839331746101379, 'word': 'mid'},
{'entity': 'ok', 'score': 0.5195121765136719, 'word': '##el'},
{'entity': 'ok', 'score': 0.7222476601600647, 'word': '##ware'}]
It worksπ! We typed wrong Add and middleware
Created by Manuel Romero/@mrm8488
Made with <span style="color: #e25555;">β₯</span> in Spain