<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
metal-graphcodebert-base-alt
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8458
- Accuracy: 0.8345
- Text Start Acc: 0.8547
- Text End Acc: 0.8247
- Code Start Acc: 0.8386
- Code End Acc: 0.8262
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Text Start Acc | Text End Acc | Code Start Acc | Code End Acc |
---|---|---|---|---|---|---|---|---|
5.0936 | 0.02 | 100 | 4.0459 | 0.4389 | 0.0980 | 0.0851 | 0.5838 | 0.5838 |
4.0329 | 0.04 | 200 | 3.7893 | 0.4571 | 0.1855 | 0.1099 | 0.5877 | 0.5847 |
3.7014 | 0.06 | 300 | 3.5354 | 0.4864 | 0.2743 | 0.1978 | 0.5922 | 0.5895 |
3.3541 | 0.08 | 400 | 3.3597 | 0.5014 | 0.3213 | 0.2726 | 0.5905 | 0.5827 |
2.9601 | 0.1 | 500 | 3.2485 | 0.5195 | 0.3788 | 0.3176 | 0.5931 | 0.5890 |
2.6231 | 0.12 | 600 | 3.0522 | 0.5628 | 0.4387 | 0.3703 | 0.6325 | 0.6250 |
2.4479 | 0.14 | 700 | 3.1864 | 0.5158 | 0.4466 | 0.3652 | 0.5712 | 0.5520 |
2.3691 | 0.16 | 800 | 3.1314 | 0.5366 | 0.4595 | 0.3870 | 0.5885 | 0.5793 |
2.2542 | 0.19 | 900 | 3.0076 | 0.5773 | 0.4959 | 0.4312 | 0.6209 | 0.6287 |
2.1889 | 0.21 | 1000 | 2.9350 | 0.5941 | 0.5310 | 0.4782 | 0.6156 | 0.6472 |
2.0839 | 0.23 | 1100 | 2.9484 | 0.5902 | 0.5633 | 0.4973 | 0.6103 | 0.6200 |
2.0556 | 0.25 | 1200 | 2.8809 | 0.6178 | 0.5749 | 0.5191 | 0.6465 | 0.6482 |
1.9026 | 0.27 | 1300 | 2.8417 | 0.6383 | 0.6198 | 0.5613 | 0.6476 | 0.6689 |
1.8538 | 0.29 | 1400 | 2.8445 | 0.6256 | 0.6396 | 0.5759 | 0.6269 | 0.6392 |
1.8787 | 0.31 | 1500 | 2.8801 | 0.6185 | 0.6191 | 0.5374 | 0.6307 | 0.6398 |
1.826 | 0.33 | 1600 | 2.8502 | 0.6401 | 0.6566 | 0.5848 | 0.6487 | 0.6477 |
1.7915 | 0.35 | 1700 | 2.8856 | 0.6409 | 0.6777 | 0.6201 | 0.6368 | 0.6382 |
1.7396 | 0.37 | 1800 | 2.7481 | 0.6671 | 0.6784 | 0.6266 | 0.6855 | 0.6609 |
1.7079 | 0.39 | 1900 | 2.8334 | 0.6796 | 0.7178 | 0.6685 | 0.6774 | 0.6706 |
1.6579 | 0.41 | 2000 | 2.7394 | 0.6817 | 0.6974 | 0.6521 | 0.6818 | 0.6873 |
1.6413 | 0.43 | 2100 | 2.7582 | 0.6882 | 0.7291 | 0.6974 | 0.6862 | 0.6692 |
1.609 | 0.45 | 2200 | 2.7347 | 0.6995 | 0.7355 | 0.6933 | 0.6986 | 0.6881 |
1.621 | 0.47 | 2300 | 2.7175 | 0.7156 | 0.7485 | 0.6903 | 0.7192 | 0.7089 |
1.5514 | 0.49 | 2400 | 2.7225 | 0.7120 | 0.7454 | 0.7059 | 0.7020 | 0.7106 |
1.59 | 0.51 | 2500 | 2.7343 | 0.7181 | 0.7648 | 0.7165 | 0.7133 | 0.7041 |
1.5822 | 0.53 | 2600 | 2.7367 | 0.7194 | 0.7587 | 0.7209 | 0.7226 | 0.6993 |
1.5111 | 0.56 | 2700 | 2.6133 | 0.7560 | 0.7522 | 0.7059 | 0.7687 | 0.7657 |
1.5228 | 0.58 | 2800 | 2.7913 | 0.7057 | 0.7764 | 0.7291 | 0.6946 | 0.6777 |
1.4873 | 0.6 | 2900 | 2.6391 | 0.7351 | 0.7740 | 0.7376 | 0.7339 | 0.7190 |
1.4889 | 0.62 | 3000 | 2.8469 | 0.6936 | 0.7839 | 0.7274 | 0.6820 | 0.6534 |
1.4905 | 0.64 | 3100 | 2.5931 | 0.7594 | 0.7764 | 0.7165 | 0.7662 | 0.7635 |
1.4269 | 0.66 | 3200 | 2.8335 | 0.7017 | 0.7757 | 0.7158 | 0.6913 | 0.6754 |
1.441 | 0.68 | 3300 | 2.7817 | 0.7289 | 0.7941 | 0.7427 | 0.7251 | 0.6997 |
1.4469 | 0.7 | 3400 | 2.6310 | 0.7415 | 0.7951 | 0.7478 | 0.7288 | 0.7292 |
1.4358 | 0.72 | 3500 | 2.7063 | 0.7407 | 0.7965 | 0.7478 | 0.7325 | 0.7226 |
1.4346 | 0.74 | 3600 | 2.4423 | 0.7905 | 0.7965 | 0.7284 | 0.8022 | 0.8021 |
1.3928 | 0.76 | 3700 | 2.7488 | 0.7316 | 0.7886 | 0.7498 | 0.7356 | 0.6962 |
1.39 | 0.78 | 3800 | 2.6366 | 0.7476 | 0.7832 | 0.7349 | 0.7481 | 0.7375 |
1.3802 | 0.8 | 3900 | 2.6885 | 0.7489 | 0.8053 | 0.7638 | 0.7387 | 0.7294 |
1.3725 | 0.82 | 4000 | 2.6432 | 0.7579 | 0.8067 | 0.7611 | 0.7561 | 0.7382 |
1.362 | 0.84 | 4100 | 2.6649 | 0.7566 | 0.8050 | 0.7682 | 0.7466 | 0.7417 |
1.3489 | 0.86 | 4200 | 2.6313 | 0.7710 | 0.8179 | 0.7645 | 0.7598 | 0.7653 |
1.3605 | 0.88 | 4300 | 2.6659 | 0.7671 | 0.8193 | 0.7781 | 0.7679 | 0.7399 |
1.3459 | 0.9 | 4400 | 2.5594 | 0.7729 | 0.8019 | 0.7665 | 0.7856 | 0.7507 |
1.323 | 0.93 | 4500 | 2.7781 | 0.7466 | 0.7982 | 0.7607 | 0.7368 | 0.7290 |
1.3537 | 0.95 | 4600 | 2.7504 | 0.7562 | 0.8033 | 0.7665 | 0.7484 | 0.7402 |
1.3261 | 0.97 | 4700 | 2.6394 | 0.7693 | 0.8033 | 0.7740 | 0.7737 | 0.7488 |
1.2923 | 0.99 | 4800 | 2.6933 | 0.7531 | 0.8216 | 0.7832 | 0.7485 | 0.7165 |
1.2676 | 1.01 | 4900 | 2.7065 | 0.7707 | 0.8155 | 0.7835 | 0.7728 | 0.7446 |
1.2143 | 1.03 | 5000 | 2.5853 | 0.8019 | 0.8172 | 0.7815 | 0.8134 | 0.7924 |
1.2437 | 1.05 | 5100 | 2.6216 | 0.7873 | 0.8172 | 0.7822 | 0.7830 | 0.7813 |
1.2048 | 1.07 | 5200 | 2.5956 | 0.8032 | 0.8179 | 0.7842 | 0.8133 | 0.7948 |
1.1875 | 1.09 | 5300 | 2.6370 | 0.7978 | 0.8237 | 0.7777 | 0.8065 | 0.7866 |
1.2584 | 1.11 | 5400 | 2.7172 | 0.7922 | 0.8165 | 0.7835 | 0.7965 | 0.7812 |
1.208 | 1.13 | 5500 | 2.6937 | 0.7794 | 0.8210 | 0.7805 | 0.7786 | 0.7625 |
1.1866 | 1.15 | 5600 | 2.8691 | 0.7691 | 0.8240 | 0.7767 | 0.7707 | 0.7413 |
1.1966 | 1.17 | 5700 | 2.7439 | 0.7900 | 0.8302 | 0.7835 | 0.7877 | 0.7781 |
1.1927 | 1.19 | 5800 | 2.6925 | 0.7885 | 0.8278 | 0.7760 | 0.7944 | 0.7715 |
1.2119 | 1.21 | 5900 | 2.7656 | 0.7849 | 0.8230 | 0.7886 | 0.7836 | 0.7688 |
1.1823 | 1.23 | 6000 | 2.6898 | 0.7925 | 0.8346 | 0.7971 | 0.7828 | 0.7828 |
1.1914 | 1.25 | 6100 | 2.7411 | 0.7839 | 0.8291 | 0.7832 | 0.7821 | 0.7673 |
1.2024 | 1.27 | 6200 | 2.7323 | 0.7785 | 0.8407 | 0.8033 | 0.7696 | 0.7511 |
1.1911 | 1.3 | 6300 | 2.8787 | 0.7615 | 0.8244 | 0.7859 | 0.7403 | 0.7464 |
1.1785 | 1.32 | 6400 | 2.8732 | 0.7681 | 0.8315 | 0.7982 | 0.7556 | 0.7414 |
1.161 | 1.34 | 6500 | 2.6904 | 0.7990 | 0.8274 | 0.7948 | 0.8038 | 0.7842 |
1.1728 | 1.36 | 6600 | 2.7605 | 0.7748 | 0.8264 | 0.7924 | 0.7720 | 0.7487 |
1.1655 | 1.38 | 6700 | 2.6682 | 0.8128 | 0.8332 | 0.7880 | 0.8234 | 0.8042 |
1.1603 | 1.4 | 6800 | 2.6899 | 0.7944 | 0.8254 | 0.7856 | 0.8002 | 0.7792 |
1.1628 | 1.42 | 6900 | 2.7413 | 0.7804 | 0.8268 | 0.7937 | 0.7694 | 0.7664 |
1.1686 | 1.44 | 7000 | 2.8091 | 0.7873 | 0.8257 | 0.7791 | 0.7845 | 0.7777 |
1.1593 | 1.46 | 7100 | 2.7174 | 0.7842 | 0.8336 | 0.7937 | 0.7762 | 0.7676 |
1.1707 | 1.48 | 7200 | 2.8678 | 0.7769 | 0.8353 | 0.8074 | 0.7626 | 0.7542 |
1.1353 | 1.5 | 7300 | 2.7481 | 0.8009 | 0.8339 | 0.7992 | 0.8038 | 0.7849 |
1.1449 | 1.52 | 7400 | 2.7501 | 0.7919 | 0.8373 | 0.7910 | 0.7978 | 0.7674 |
1.1574 | 1.54 | 7500 | 2.7090 | 0.8124 | 0.8325 | 0.8016 | 0.8153 | 0.8058 |
1.1248 | 1.56 | 7600 | 2.7115 | 0.7987 | 0.8305 | 0.7771 | 0.8059 | 0.7872 |
1.1243 | 1.58 | 7700 | 2.8454 | 0.7772 | 0.8264 | 0.7873 | 0.7740 | 0.7558 |
1.1288 | 1.6 | 7800 | 2.8487 | 0.7962 | 0.8383 | 0.8053 | 0.7961 | 0.7748 |
1.1472 | 1.62 | 7900 | 2.7028 | 0.8074 | 0.8370 | 0.8022 | 0.8052 | 0.7994 |
1.1437 | 1.64 | 8000 | 2.6829 | 0.8037 | 0.8373 | 0.7907 | 0.8117 | 0.7870 |
1.1246 | 1.67 | 8100 | 2.7628 | 0.8109 | 0.8363 | 0.7992 | 0.8191 | 0.7971 |
1.1292 | 1.69 | 8200 | 2.6377 | 0.8175 | 0.8342 | 0.7931 | 0.8251 | 0.8130 |
1.1101 | 1.71 | 8300 | 2.6596 | 0.8131 | 0.8308 | 0.7917 | 0.8197 | 0.8080 |
1.097 | 1.73 | 8400 | 2.7205 | 0.8053 | 0.8349 | 0.7988 | 0.8063 | 0.7947 |
1.1164 | 1.75 | 8500 | 2.7820 | 0.7959 | 0.8462 | 0.8036 | 0.7928 | 0.7747 |
1.1016 | 1.77 | 8600 | 2.7333 | 0.8123 | 0.8380 | 0.7954 | 0.8096 | 0.8113 |
1.1237 | 1.79 | 8700 | 2.7948 | 0.8030 | 0.8455 | 0.7971 | 0.8014 | 0.7894 |
1.0899 | 1.81 | 8800 | 2.7867 | 0.8175 | 0.8506 | 0.7934 | 0.8225 | 0.8087 |
1.1009 | 1.83 | 8900 | 2.8828 | 0.8006 | 0.8479 | 0.8060 | 0.7907 | 0.7886 |
1.0954 | 1.85 | 9000 | 2.7763 | 0.8042 | 0.8448 | 0.8019 | 0.8136 | 0.7789 |
1.1311 | 1.87 | 9100 | 2.8140 | 0.8002 | 0.8462 | 0.8121 | 0.7933 | 0.7830 |
1.09 | 1.89 | 9200 | 2.7661 | 0.8141 | 0.8448 | 0.8162 | 0.8164 | 0.7982 |
1.1134 | 1.91 | 9300 | 2.7818 | 0.8158 | 0.8550 | 0.8145 | 0.8107 | 0.8051 |
1.098 | 1.93 | 9400 | 2.8033 | 0.8061 | 0.8482 | 0.8033 | 0.8046 | 0.7911 |
1.0807 | 1.95 | 9500 | 2.8603 | 0.8032 | 0.8519 | 0.8145 | 0.7977 | 0.7838 |
1.095 | 1.97 | 9600 | 2.7297 | 0.8250 | 0.8448 | 0.8142 | 0.8352 | 0.8112 |
1.1206 | 1.99 | 9700 | 2.6783 | 0.8298 | 0.8400 | 0.8142 | 0.8354 | 0.8264 |
1.0218 | 2.01 | 9800 | 2.7950 | 0.8208 | 0.8428 | 0.8108 | 0.8261 | 0.8105 |
1.0405 | 2.04 | 9900 | 2.7374 | 0.8244 | 0.8421 | 0.8091 | 0.8349 | 0.8129 |
1.0075 | 2.06 | 10000 | 2.8039 | 0.8146 | 0.8407 | 0.8138 | 0.8181 | 0.8007 |
1.014 | 2.08 | 10100 | 2.9060 | 0.8038 | 0.8410 | 0.8135 | 0.8019 | 0.7860 |
1.0221 | 2.1 | 10200 | 2.7681 | 0.8242 | 0.8485 | 0.8087 | 0.8264 | 0.8184 |
1.0088 | 2.12 | 10300 | 2.7830 | 0.8217 | 0.8502 | 0.8111 | 0.8283 | 0.8076 |
1.034 | 2.14 | 10400 | 2.8104 | 0.8189 | 0.8428 | 0.7999 | 0.8289 | 0.8069 |
1.031 | 2.16 | 10500 | 2.7891 | 0.8269 | 0.8465 | 0.8074 | 0.8360 | 0.8177 |
0.9908 | 2.18 | 10600 | 2.7930 | 0.8253 | 0.8540 | 0.8186 | 0.8273 | 0.8140 |
1.0195 | 2.2 | 10700 | 2.8106 | 0.8215 | 0.8489 | 0.8104 | 0.8227 | 0.8136 |
0.9713 | 2.22 | 10800 | 2.8399 | 0.8209 | 0.8506 | 0.8165 | 0.8187 | 0.8124 |
1.0328 | 2.24 | 10900 | 2.8057 | 0.8202 | 0.8448 | 0.8128 | 0.8249 | 0.8082 |
0.9882 | 2.26 | 11000 | 2.8284 | 0.8250 | 0.8513 | 0.8148 | 0.8238 | 0.8194 |
0.9769 | 2.28 | 11100 | 2.8672 | 0.8230 | 0.8492 | 0.8169 | 0.8205 | 0.8170 |
1.0023 | 2.3 | 11200 | 2.8656 | 0.8166 | 0.8451 | 0.8148 | 0.8174 | 0.8045 |
1.0009 | 2.32 | 11300 | 2.8217 | 0.8238 | 0.8390 | 0.8125 | 0.8242 | 0.8218 |
1.0118 | 2.34 | 11400 | 2.8389 | 0.8243 | 0.8462 | 0.8172 | 0.8281 | 0.8143 |
0.9834 | 2.36 | 11500 | 2.8328 | 0.8241 | 0.8513 | 0.8196 | 0.8264 | 0.8123 |
1.0034 | 2.38 | 11600 | 2.8382 | 0.8205 | 0.8516 | 0.8176 | 0.8156 | 0.8137 |
0.993 | 2.41 | 11700 | 2.8268 | 0.8323 | 0.8530 | 0.8196 | 0.8386 | 0.8228 |
1.0093 | 2.43 | 11800 | 2.8248 | 0.8290 | 0.8533 | 0.8101 | 0.8343 | 0.8214 |
0.9969 | 2.45 | 11900 | 2.8757 | 0.8227 | 0.8530 | 0.8189 | 0.8204 | 0.8140 |
0.9955 | 2.47 | 12000 | 2.7811 | 0.8341 | 0.8557 | 0.8210 | 0.8374 | 0.8273 |
0.9997 | 2.49 | 12100 | 2.8522 | 0.8236 | 0.8533 | 0.8172 | 0.8235 | 0.8139 |
1.0031 | 2.51 | 12200 | 2.7892 | 0.8297 | 0.8499 | 0.8179 | 0.8373 | 0.8185 |
0.9941 | 2.53 | 12300 | 2.8762 | 0.8217 | 0.8553 | 0.8182 | 0.8167 | 0.8141 |
0.9934 | 2.55 | 12400 | 2.8764 | 0.8249 | 0.8547 | 0.8193 | 0.8262 | 0.8134 |
0.9894 | 2.57 | 12500 | 2.8748 | 0.8216 | 0.8489 | 0.8189 | 0.8234 | 0.8096 |
0.9916 | 2.59 | 12600 | 2.8056 | 0.8309 | 0.8513 | 0.8251 | 0.8306 | 0.8252 |
0.9685 | 2.61 | 12700 | 2.8805 | 0.8275 | 0.8516 | 0.8257 | 0.8306 | 0.8151 |
0.998 | 2.63 | 12800 | 2.8044 | 0.8362 | 0.8553 | 0.8244 | 0.8388 | 0.8306 |
0.9829 | 2.65 | 12900 | 2.8259 | 0.8321 | 0.8523 | 0.8251 | 0.8316 | 0.8271 |
1.0126 | 2.67 | 13000 | 2.8516 | 0.8303 | 0.8526 | 0.8220 | 0.8349 | 0.8200 |
0.9689 | 2.69 | 13100 | 2.8805 | 0.8255 | 0.8523 | 0.8210 | 0.8295 | 0.8122 |
1.0072 | 2.71 | 13200 | 2.7890 | 0.8381 | 0.8547 | 0.8261 | 0.8428 | 0.8316 |
0.9904 | 2.73 | 13300 | 2.8518 | 0.8332 | 0.8523 | 0.8223 | 0.8387 | 0.8242 |
0.9957 | 2.75 | 13400 | 2.8190 | 0.8340 | 0.8550 | 0.8240 | 0.8387 | 0.8246 |
0.9486 | 2.78 | 13500 | 2.8314 | 0.8343 | 0.8547 | 0.8244 | 0.8406 | 0.8238 |
0.9735 | 2.8 | 13600 | 2.8377 | 0.8348 | 0.8584 | 0.8237 | 0.8425 | 0.8218 |
0.9708 | 2.82 | 13700 | 2.8309 | 0.8378 | 0.8587 | 0.8285 | 0.8417 | 0.8292 |
0.9937 | 2.84 | 13800 | 2.8004 | 0.8393 | 0.8553 | 0.8237 | 0.8468 | 0.8317 |
1.0104 | 2.86 | 13900 | 2.8277 | 0.8356 | 0.8574 | 0.8274 | 0.8411 | 0.8244 |
0.9798 | 2.88 | 14000 | 2.8485 | 0.8326 | 0.8547 | 0.8237 | 0.8401 | 0.8195 |
0.9743 | 2.9 | 14100 | 2.8542 | 0.8317 | 0.8543 | 0.8216 | 0.8369 | 0.8214 |
0.9778 | 2.92 | 14200 | 2.8403 | 0.8333 | 0.8543 | 0.8237 | 0.8396 | 0.8222 |
0.9552 | 2.94 | 14300 | 2.8287 | 0.8349 | 0.8547 | 0.8247 | 0.8397 | 0.8262 |
0.9746 | 2.96 | 14400 | 2.8721 | 0.8319 | 0.8557 | 0.8257 | 0.8346 | 0.8220 |
0.9822 | 2.98 | 14500 | 2.8549 | 0.8334 | 0.8543 | 0.8261 | 0.8369 | 0.8242 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3