generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

metal-graphcodebert-base-alt

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Text Start Acc Text End Acc Code Start Acc Code End Acc
5.0936 0.02 100 4.0459 0.4389 0.0980 0.0851 0.5838 0.5838
4.0329 0.04 200 3.7893 0.4571 0.1855 0.1099 0.5877 0.5847
3.7014 0.06 300 3.5354 0.4864 0.2743 0.1978 0.5922 0.5895
3.3541 0.08 400 3.3597 0.5014 0.3213 0.2726 0.5905 0.5827
2.9601 0.1 500 3.2485 0.5195 0.3788 0.3176 0.5931 0.5890
2.6231 0.12 600 3.0522 0.5628 0.4387 0.3703 0.6325 0.6250
2.4479 0.14 700 3.1864 0.5158 0.4466 0.3652 0.5712 0.5520
2.3691 0.16 800 3.1314 0.5366 0.4595 0.3870 0.5885 0.5793
2.2542 0.19 900 3.0076 0.5773 0.4959 0.4312 0.6209 0.6287
2.1889 0.21 1000 2.9350 0.5941 0.5310 0.4782 0.6156 0.6472
2.0839 0.23 1100 2.9484 0.5902 0.5633 0.4973 0.6103 0.6200
2.0556 0.25 1200 2.8809 0.6178 0.5749 0.5191 0.6465 0.6482
1.9026 0.27 1300 2.8417 0.6383 0.6198 0.5613 0.6476 0.6689
1.8538 0.29 1400 2.8445 0.6256 0.6396 0.5759 0.6269 0.6392
1.8787 0.31 1500 2.8801 0.6185 0.6191 0.5374 0.6307 0.6398
1.826 0.33 1600 2.8502 0.6401 0.6566 0.5848 0.6487 0.6477
1.7915 0.35 1700 2.8856 0.6409 0.6777 0.6201 0.6368 0.6382
1.7396 0.37 1800 2.7481 0.6671 0.6784 0.6266 0.6855 0.6609
1.7079 0.39 1900 2.8334 0.6796 0.7178 0.6685 0.6774 0.6706
1.6579 0.41 2000 2.7394 0.6817 0.6974 0.6521 0.6818 0.6873
1.6413 0.43 2100 2.7582 0.6882 0.7291 0.6974 0.6862 0.6692
1.609 0.45 2200 2.7347 0.6995 0.7355 0.6933 0.6986 0.6881
1.621 0.47 2300 2.7175 0.7156 0.7485 0.6903 0.7192 0.7089
1.5514 0.49 2400 2.7225 0.7120 0.7454 0.7059 0.7020 0.7106
1.59 0.51 2500 2.7343 0.7181 0.7648 0.7165 0.7133 0.7041
1.5822 0.53 2600 2.7367 0.7194 0.7587 0.7209 0.7226 0.6993
1.5111 0.56 2700 2.6133 0.7560 0.7522 0.7059 0.7687 0.7657
1.5228 0.58 2800 2.7913 0.7057 0.7764 0.7291 0.6946 0.6777
1.4873 0.6 2900 2.6391 0.7351 0.7740 0.7376 0.7339 0.7190
1.4889 0.62 3000 2.8469 0.6936 0.7839 0.7274 0.6820 0.6534
1.4905 0.64 3100 2.5931 0.7594 0.7764 0.7165 0.7662 0.7635
1.4269 0.66 3200 2.8335 0.7017 0.7757 0.7158 0.6913 0.6754
1.441 0.68 3300 2.7817 0.7289 0.7941 0.7427 0.7251 0.6997
1.4469 0.7 3400 2.6310 0.7415 0.7951 0.7478 0.7288 0.7292
1.4358 0.72 3500 2.7063 0.7407 0.7965 0.7478 0.7325 0.7226
1.4346 0.74 3600 2.4423 0.7905 0.7965 0.7284 0.8022 0.8021
1.3928 0.76 3700 2.7488 0.7316 0.7886 0.7498 0.7356 0.6962
1.39 0.78 3800 2.6366 0.7476 0.7832 0.7349 0.7481 0.7375
1.3802 0.8 3900 2.6885 0.7489 0.8053 0.7638 0.7387 0.7294
1.3725 0.82 4000 2.6432 0.7579 0.8067 0.7611 0.7561 0.7382
1.362 0.84 4100 2.6649 0.7566 0.8050 0.7682 0.7466 0.7417
1.3489 0.86 4200 2.6313 0.7710 0.8179 0.7645 0.7598 0.7653
1.3605 0.88 4300 2.6659 0.7671 0.8193 0.7781 0.7679 0.7399
1.3459 0.9 4400 2.5594 0.7729 0.8019 0.7665 0.7856 0.7507
1.323 0.93 4500 2.7781 0.7466 0.7982 0.7607 0.7368 0.7290
1.3537 0.95 4600 2.7504 0.7562 0.8033 0.7665 0.7484 0.7402
1.3261 0.97 4700 2.6394 0.7693 0.8033 0.7740 0.7737 0.7488
1.2923 0.99 4800 2.6933 0.7531 0.8216 0.7832 0.7485 0.7165
1.2676 1.01 4900 2.7065 0.7707 0.8155 0.7835 0.7728 0.7446
1.2143 1.03 5000 2.5853 0.8019 0.8172 0.7815 0.8134 0.7924
1.2437 1.05 5100 2.6216 0.7873 0.8172 0.7822 0.7830 0.7813
1.2048 1.07 5200 2.5956 0.8032 0.8179 0.7842 0.8133 0.7948
1.1875 1.09 5300 2.6370 0.7978 0.8237 0.7777 0.8065 0.7866
1.2584 1.11 5400 2.7172 0.7922 0.8165 0.7835 0.7965 0.7812
1.208 1.13 5500 2.6937 0.7794 0.8210 0.7805 0.7786 0.7625
1.1866 1.15 5600 2.8691 0.7691 0.8240 0.7767 0.7707 0.7413
1.1966 1.17 5700 2.7439 0.7900 0.8302 0.7835 0.7877 0.7781
1.1927 1.19 5800 2.6925 0.7885 0.8278 0.7760 0.7944 0.7715
1.2119 1.21 5900 2.7656 0.7849 0.8230 0.7886 0.7836 0.7688
1.1823 1.23 6000 2.6898 0.7925 0.8346 0.7971 0.7828 0.7828
1.1914 1.25 6100 2.7411 0.7839 0.8291 0.7832 0.7821 0.7673
1.2024 1.27 6200 2.7323 0.7785 0.8407 0.8033 0.7696 0.7511
1.1911 1.3 6300 2.8787 0.7615 0.8244 0.7859 0.7403 0.7464
1.1785 1.32 6400 2.8732 0.7681 0.8315 0.7982 0.7556 0.7414
1.161 1.34 6500 2.6904 0.7990 0.8274 0.7948 0.8038 0.7842
1.1728 1.36 6600 2.7605 0.7748 0.8264 0.7924 0.7720 0.7487
1.1655 1.38 6700 2.6682 0.8128 0.8332 0.7880 0.8234 0.8042
1.1603 1.4 6800 2.6899 0.7944 0.8254 0.7856 0.8002 0.7792
1.1628 1.42 6900 2.7413 0.7804 0.8268 0.7937 0.7694 0.7664
1.1686 1.44 7000 2.8091 0.7873 0.8257 0.7791 0.7845 0.7777
1.1593 1.46 7100 2.7174 0.7842 0.8336 0.7937 0.7762 0.7676
1.1707 1.48 7200 2.8678 0.7769 0.8353 0.8074 0.7626 0.7542
1.1353 1.5 7300 2.7481 0.8009 0.8339 0.7992 0.8038 0.7849
1.1449 1.52 7400 2.7501 0.7919 0.8373 0.7910 0.7978 0.7674
1.1574 1.54 7500 2.7090 0.8124 0.8325 0.8016 0.8153 0.8058
1.1248 1.56 7600 2.7115 0.7987 0.8305 0.7771 0.8059 0.7872
1.1243 1.58 7700 2.8454 0.7772 0.8264 0.7873 0.7740 0.7558
1.1288 1.6 7800 2.8487 0.7962 0.8383 0.8053 0.7961 0.7748
1.1472 1.62 7900 2.7028 0.8074 0.8370 0.8022 0.8052 0.7994
1.1437 1.64 8000 2.6829 0.8037 0.8373 0.7907 0.8117 0.7870
1.1246 1.67 8100 2.7628 0.8109 0.8363 0.7992 0.8191 0.7971
1.1292 1.69 8200 2.6377 0.8175 0.8342 0.7931 0.8251 0.8130
1.1101 1.71 8300 2.6596 0.8131 0.8308 0.7917 0.8197 0.8080
1.097 1.73 8400 2.7205 0.8053 0.8349 0.7988 0.8063 0.7947
1.1164 1.75 8500 2.7820 0.7959 0.8462 0.8036 0.7928 0.7747
1.1016 1.77 8600 2.7333 0.8123 0.8380 0.7954 0.8096 0.8113
1.1237 1.79 8700 2.7948 0.8030 0.8455 0.7971 0.8014 0.7894
1.0899 1.81 8800 2.7867 0.8175 0.8506 0.7934 0.8225 0.8087
1.1009 1.83 8900 2.8828 0.8006 0.8479 0.8060 0.7907 0.7886
1.0954 1.85 9000 2.7763 0.8042 0.8448 0.8019 0.8136 0.7789
1.1311 1.87 9100 2.8140 0.8002 0.8462 0.8121 0.7933 0.7830
1.09 1.89 9200 2.7661 0.8141 0.8448 0.8162 0.8164 0.7982
1.1134 1.91 9300 2.7818 0.8158 0.8550 0.8145 0.8107 0.8051
1.098 1.93 9400 2.8033 0.8061 0.8482 0.8033 0.8046 0.7911
1.0807 1.95 9500 2.8603 0.8032 0.8519 0.8145 0.7977 0.7838
1.095 1.97 9600 2.7297 0.8250 0.8448 0.8142 0.8352 0.8112
1.1206 1.99 9700 2.6783 0.8298 0.8400 0.8142 0.8354 0.8264
1.0218 2.01 9800 2.7950 0.8208 0.8428 0.8108 0.8261 0.8105
1.0405 2.04 9900 2.7374 0.8244 0.8421 0.8091 0.8349 0.8129
1.0075 2.06 10000 2.8039 0.8146 0.8407 0.8138 0.8181 0.8007
1.014 2.08 10100 2.9060 0.8038 0.8410 0.8135 0.8019 0.7860
1.0221 2.1 10200 2.7681 0.8242 0.8485 0.8087 0.8264 0.8184
1.0088 2.12 10300 2.7830 0.8217 0.8502 0.8111 0.8283 0.8076
1.034 2.14 10400 2.8104 0.8189 0.8428 0.7999 0.8289 0.8069
1.031 2.16 10500 2.7891 0.8269 0.8465 0.8074 0.8360 0.8177
0.9908 2.18 10600 2.7930 0.8253 0.8540 0.8186 0.8273 0.8140
1.0195 2.2 10700 2.8106 0.8215 0.8489 0.8104 0.8227 0.8136
0.9713 2.22 10800 2.8399 0.8209 0.8506 0.8165 0.8187 0.8124
1.0328 2.24 10900 2.8057 0.8202 0.8448 0.8128 0.8249 0.8082
0.9882 2.26 11000 2.8284 0.8250 0.8513 0.8148 0.8238 0.8194
0.9769 2.28 11100 2.8672 0.8230 0.8492 0.8169 0.8205 0.8170
1.0023 2.3 11200 2.8656 0.8166 0.8451 0.8148 0.8174 0.8045
1.0009 2.32 11300 2.8217 0.8238 0.8390 0.8125 0.8242 0.8218
1.0118 2.34 11400 2.8389 0.8243 0.8462 0.8172 0.8281 0.8143
0.9834 2.36 11500 2.8328 0.8241 0.8513 0.8196 0.8264 0.8123
1.0034 2.38 11600 2.8382 0.8205 0.8516 0.8176 0.8156 0.8137
0.993 2.41 11700 2.8268 0.8323 0.8530 0.8196 0.8386 0.8228
1.0093 2.43 11800 2.8248 0.8290 0.8533 0.8101 0.8343 0.8214
0.9969 2.45 11900 2.8757 0.8227 0.8530 0.8189 0.8204 0.8140
0.9955 2.47 12000 2.7811 0.8341 0.8557 0.8210 0.8374 0.8273
0.9997 2.49 12100 2.8522 0.8236 0.8533 0.8172 0.8235 0.8139
1.0031 2.51 12200 2.7892 0.8297 0.8499 0.8179 0.8373 0.8185
0.9941 2.53 12300 2.8762 0.8217 0.8553 0.8182 0.8167 0.8141
0.9934 2.55 12400 2.8764 0.8249 0.8547 0.8193 0.8262 0.8134
0.9894 2.57 12500 2.8748 0.8216 0.8489 0.8189 0.8234 0.8096
0.9916 2.59 12600 2.8056 0.8309 0.8513 0.8251 0.8306 0.8252
0.9685 2.61 12700 2.8805 0.8275 0.8516 0.8257 0.8306 0.8151
0.998 2.63 12800 2.8044 0.8362 0.8553 0.8244 0.8388 0.8306
0.9829 2.65 12900 2.8259 0.8321 0.8523 0.8251 0.8316 0.8271
1.0126 2.67 13000 2.8516 0.8303 0.8526 0.8220 0.8349 0.8200
0.9689 2.69 13100 2.8805 0.8255 0.8523 0.8210 0.8295 0.8122
1.0072 2.71 13200 2.7890 0.8381 0.8547 0.8261 0.8428 0.8316
0.9904 2.73 13300 2.8518 0.8332 0.8523 0.8223 0.8387 0.8242
0.9957 2.75 13400 2.8190 0.8340 0.8550 0.8240 0.8387 0.8246
0.9486 2.78 13500 2.8314 0.8343 0.8547 0.8244 0.8406 0.8238
0.9735 2.8 13600 2.8377 0.8348 0.8584 0.8237 0.8425 0.8218
0.9708 2.82 13700 2.8309 0.8378 0.8587 0.8285 0.8417 0.8292
0.9937 2.84 13800 2.8004 0.8393 0.8553 0.8237 0.8468 0.8317
1.0104 2.86 13900 2.8277 0.8356 0.8574 0.8274 0.8411 0.8244
0.9798 2.88 14000 2.8485 0.8326 0.8547 0.8237 0.8401 0.8195
0.9743 2.9 14100 2.8542 0.8317 0.8543 0.8216 0.8369 0.8214
0.9778 2.92 14200 2.8403 0.8333 0.8543 0.8237 0.8396 0.8222
0.9552 2.94 14300 2.8287 0.8349 0.8547 0.8247 0.8397 0.8262
0.9746 2.96 14400 2.8721 0.8319 0.8557 0.8257 0.8346 0.8220
0.9822 2.98 14500 2.8549 0.8334 0.8543 0.8261 0.8369 0.8242

Framework versions