<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
metal-graphcodebert-base-2
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2935
- Accuracy: 0.8148
- Text Start Acc: 0.8339
- Text End Acc: 0.7822
- Code Start Acc: 0.8262
- Code End Acc: 0.8090
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Text Start Acc | Text End Acc | Code Start Acc | Code End Acc |
---|---|---|---|---|---|---|---|---|
3.4743 | 0.02 | 100 | 3.0823 | 0.4416 | 0.1307 | 0.0943 | 0.5789 | 0.5790 |
3.0861 | 0.04 | 200 | 2.8571 | 0.4655 | 0.2151 | 0.1501 | 0.5843 | 0.5828 |
2.762 | 0.06 | 300 | 2.6350 | 0.4493 | 0.3091 | 0.2056 | 0.5249 | 0.5339 |
2.3937 | 0.08 | 400 | 2.5547 | 0.4035 | 0.3499 | 0.2832 | 0.4801 | 0.3994 |
2.039 | 0.1 | 500 | 2.4216 | 0.4698 | 0.3931 | 0.3074 | 0.5351 | 0.5043 |
1.7947 | 0.12 | 600 | 2.2881 | 0.5117 | 0.4316 | 0.3281 | 0.5715 | 0.5618 |
1.6689 | 0.14 | 700 | 2.4587 | 0.4614 | 0.4118 | 0.3233 | 0.5141 | 0.4869 |
1.6099 | 0.16 | 800 | 2.4045 | 0.4840 | 0.4346 | 0.3781 | 0.5167 | 0.5160 |
1.5396 | 0.19 | 900 | 2.3508 | 0.5174 | 0.4496 | 0.3839 | 0.5553 | 0.5635 |
1.543 | 0.21 | 1000 | 2.2789 | 0.5236 | 0.4554 | 0.4095 | 0.5631 | 0.5603 |
1.4762 | 0.23 | 1100 | 2.2925 | 0.5332 | 0.4908 | 0.4057 | 0.5709 | 0.5662 |
1.4793 | 0.25 | 1200 | 2.3588 | 0.5128 | 0.4833 | 0.4255 | 0.5357 | 0.5387 |
1.3458 | 0.27 | 1300 | 2.2338 | 0.5748 | 0.5102 | 0.4639 | 0.6120 | 0.6110 |
1.3581 | 0.29 | 1400 | 2.2887 | 0.5627 | 0.5664 | 0.4752 | 0.5784 | 0.5820 |
1.3424 | 0.31 | 1500 | 2.3569 | 0.5493 | 0.5408 | 0.4666 | 0.5725 | 0.5642 |
1.3326 | 0.33 | 1600 | 2.1865 | 0.5975 | 0.5636 | 0.4792 | 0.6230 | 0.6354 |
1.2903 | 0.35 | 1700 | 2.3987 | 0.5717 | 0.5963 | 0.5265 | 0.5721 | 0.5800 |
1.2725 | 0.37 | 1800 | 2.2467 | 0.5949 | 0.6113 | 0.5252 | 0.6051 | 0.6068 |
1.2446 | 0.39 | 1900 | 2.3638 | 0.5929 | 0.6368 | 0.5456 | 0.5924 | 0.5948 |
1.242 | 0.41 | 2000 | 2.2359 | 0.6175 | 0.6225 | 0.5507 | 0.6304 | 0.6303 |
1.2096 | 0.43 | 2100 | 2.1869 | 0.6336 | 0.6572 | 0.5824 | 0.6528 | 0.6257 |
1.2203 | 0.45 | 2200 | 2.1308 | 0.6526 | 0.6644 | 0.6014 | 0.6584 | 0.6634 |
1.1875 | 0.47 | 2300 | 2.1421 | 0.6522 | 0.6722 | 0.6011 | 0.6723 | 0.6450 |
1.1764 | 0.49 | 2400 | 2.1617 | 0.6640 | 0.6882 | 0.6031 | 0.6714 | 0.6717 |
1.1718 | 0.51 | 2500 | 2.2392 | 0.6718 | 0.7063 | 0.6123 | 0.6898 | 0.6643 |
1.1809 | 0.53 | 2600 | 2.1576 | 0.6710 | 0.7182 | 0.6331 | 0.6815 | 0.6565 |
1.1286 | 0.56 | 2700 | 2.2907 | 0.6760 | 0.6675 | 0.6059 | 0.7013 | 0.6837 |
1.1469 | 0.58 | 2800 | 2.2763 | 0.6437 | 0.7172 | 0.6378 | 0.6368 | 0.6223 |
1.1246 | 0.6 | 2900 | 2.1459 | 0.7003 | 0.7042 | 0.6280 | 0.7270 | 0.7021 |
1.1419 | 0.62 | 3000 | 2.4165 | 0.6374 | 0.7233 | 0.6477 | 0.6250 | 0.6095 |
1.1509 | 0.64 | 3100 | 2.0643 | 0.7146 | 0.7366 | 0.6453 | 0.7467 | 0.7021 |
1.101 | 0.66 | 3200 | 2.2032 | 0.6953 | 0.7209 | 0.6569 | 0.7054 | 0.6905 |
1.1073 | 0.68 | 3300 | 2.2400 | 0.6986 | 0.7318 | 0.6767 | 0.6933 | 0.6993 |
1.0996 | 0.7 | 3400 | 2.1097 | 0.6972 | 0.7284 | 0.6637 | 0.6962 | 0.6993 |
1.0855 | 0.72 | 3500 | 2.2480 | 0.6894 | 0.7338 | 0.6644 | 0.6956 | 0.6750 |
1.1079 | 0.74 | 3600 | 2.0058 | 0.7267 | 0.7389 | 0.6787 | 0.7386 | 0.7298 |
1.0546 | 0.76 | 3700 | 2.3854 | 0.6602 | 0.7423 | 0.6920 | 0.6612 | 0.6117 |
1.0823 | 0.78 | 3800 | 2.1042 | 0.6988 | 0.7376 | 0.6726 | 0.6997 | 0.6926 |
1.0537 | 0.8 | 3900 | 2.1368 | 0.7034 | 0.7383 | 0.6760 | 0.7176 | 0.6861 |
1.0522 | 0.82 | 4000 | 2.2278 | 0.6967 | 0.7383 | 0.6780 | 0.7062 | 0.6776 |
1.0453 | 0.84 | 4100 | 2.1500 | 0.7317 | 0.7543 | 0.6903 | 0.7508 | 0.7206 |
1.0618 | 0.86 | 4200 | 2.1483 | 0.7210 | 0.7471 | 0.6869 | 0.7264 | 0.7190 |
1.0459 | 0.88 | 4300 | 2.2713 | 0.7142 | 0.7526 | 0.7046 | 0.7233 | 0.6930 |
1.0491 | 0.9 | 4400 | 2.1303 | 0.7223 | 0.7699 | 0.7063 | 0.7368 | 0.6947 |
1.0429 | 0.93 | 4500 | 2.1760 | 0.7148 | 0.7474 | 0.6814 | 0.7304 | 0.6996 |
1.0515 | 0.95 | 4600 | 2.2770 | 0.7030 | 0.7536 | 0.6926 | 0.7085 | 0.6807 |
1.0367 | 0.97 | 4700 | 2.0381 | 0.7520 | 0.7706 | 0.7240 | 0.7681 | 0.7399 |
1.0 | 0.99 | 4800 | 2.1916 | 0.7363 | 0.7740 | 0.7134 | 0.7521 | 0.7145 |
1.0128 | 1.01 | 4900 | 2.1998 | 0.7292 | 0.7573 | 0.7114 | 0.7457 | 0.7084 |
0.9786 | 1.03 | 5000 | 2.0550 | 0.7588 | 0.7914 | 0.7229 | 0.7673 | 0.7517 |
0.9996 | 1.05 | 5100 | 1.9935 | 0.7725 | 0.7910 | 0.7291 | 0.7859 | 0.7694 |
0.9709 | 1.07 | 5200 | 2.0956 | 0.7700 | 0.7869 | 0.7335 | 0.7819 | 0.7663 |
0.9677 | 1.09 | 5300 | 2.1409 | 0.7561 | 0.7784 | 0.7386 | 0.7522 | 0.7581 |
1.0005 | 1.11 | 5400 | 2.2058 | 0.7598 | 0.7890 | 0.7359 | 0.7744 | 0.7431 |
0.97 | 1.13 | 5500 | 2.1241 | 0.7428 | 0.7801 | 0.7338 | 0.7477 | 0.7261 |
0.9657 | 1.15 | 5600 | 2.2431 | 0.7407 | 0.7893 | 0.7287 | 0.7420 | 0.7240 |
0.9704 | 1.17 | 5700 | 2.0821 | 0.7730 | 0.7842 | 0.7338 | 0.7953 | 0.7623 |
0.9548 | 1.19 | 5800 | 2.1463 | 0.7667 | 0.7883 | 0.7332 | 0.7748 | 0.7635 |
0.9653 | 1.21 | 5900 | 2.1542 | 0.7690 | 0.7958 | 0.7246 | 0.7845 | 0.7609 |
0.9399 | 1.23 | 6000 | 2.2528 | 0.7548 | 0.7968 | 0.7447 | 0.7532 | 0.7430 |
0.963 | 1.25 | 6100 | 2.1844 | 0.7595 | 0.7869 | 0.7457 | 0.7633 | 0.7500 |
0.9839 | 1.27 | 6200 | 2.0998 | 0.7791 | 0.8057 | 0.7485 | 0.7848 | 0.7751 |
0.9686 | 1.3 | 6300 | 2.3197 | 0.7276 | 0.7856 | 0.7291 | 0.7210 | 0.7094 |
0.9572 | 1.32 | 6400 | 2.3235 | 0.7449 | 0.8043 | 0.7509 | 0.7379 | 0.7247 |
0.9563 | 1.34 | 6500 | 2.1890 | 0.7690 | 0.7937 | 0.7474 | 0.7751 | 0.7616 |
0.9459 | 1.36 | 6600 | 2.1680 | 0.7521 | 0.7958 | 0.7362 | 0.7635 | 0.7292 |
0.9454 | 1.38 | 6700 | 2.2111 | 0.7647 | 0.7968 | 0.7539 | 0.7666 | 0.7538 |
0.958 | 1.4 | 6800 | 2.1828 | 0.7769 | 0.8016 | 0.7410 | 0.7852 | 0.7734 |
0.9363 | 1.42 | 6900 | 2.1966 | 0.7536 | 0.7992 | 0.7549 | 0.7466 | 0.7410 |
0.9458 | 1.44 | 7000 | 2.2366 | 0.7523 | 0.7917 | 0.7366 | 0.7538 | 0.7409 |
0.9321 | 1.46 | 7100 | 2.3037 | 0.7575 | 0.8060 | 0.7515 | 0.7521 | 0.7451 |
0.9544 | 1.48 | 7200 | 2.3062 | 0.7478 | 0.8091 | 0.7617 | 0.7466 | 0.7177 |
0.9267 | 1.5 | 7300 | 2.2160 | 0.7721 | 0.8036 | 0.7526 | 0.7805 | 0.7588 |
0.935 | 1.52 | 7400 | 2.2067 | 0.7727 | 0.8159 | 0.7631 | 0.7772 | 0.7542 |
0.9499 | 1.54 | 7500 | 2.2124 | 0.7782 | 0.8074 | 0.7594 | 0.7839 | 0.7683 |
0.9079 | 1.56 | 7600 | 2.2166 | 0.7700 | 0.8104 | 0.7563 | 0.7808 | 0.7480 |
0.9051 | 1.58 | 7700 | 2.2090 | 0.7729 | 0.8022 | 0.7498 | 0.7795 | 0.7637 |
0.9216 | 1.6 | 7800 | 2.3149 | 0.7586 | 0.8138 | 0.7590 | 0.7504 | 0.7436 |
0.9407 | 1.62 | 7900 | 2.1924 | 0.7791 | 0.8118 | 0.7607 | 0.7874 | 0.7649 |
0.9299 | 1.64 | 8000 | 2.1380 | 0.7848 | 0.8101 | 0.7577 | 0.8042 | 0.7663 |
0.9199 | 1.67 | 8100 | 2.2997 | 0.7673 | 0.7971 | 0.7461 | 0.7805 | 0.7504 |
0.9218 | 1.69 | 8200 | 2.1245 | 0.7887 | 0.8104 | 0.7651 | 0.7985 | 0.7798 |
0.9117 | 1.71 | 8300 | 2.1066 | 0.7941 | 0.8053 | 0.7563 | 0.8051 | 0.7943 |
0.8925 | 1.73 | 8400 | 2.1668 | 0.7858 | 0.8121 | 0.7675 | 0.7907 | 0.7775 |
0.9306 | 1.75 | 8500 | 2.2660 | 0.7697 | 0.8155 | 0.7720 | 0.7659 | 0.7534 |
0.8981 | 1.77 | 8600 | 2.1441 | 0.7958 | 0.8189 | 0.7777 | 0.7999 | 0.7894 |
0.9366 | 1.79 | 8700 | 2.2896 | 0.7758 | 0.8206 | 0.7737 | 0.7767 | 0.7572 |
0.8987 | 1.81 | 8800 | 2.2486 | 0.7799 | 0.8118 | 0.7600 | 0.7849 | 0.7698 |
0.8988 | 1.83 | 8900 | 2.2265 | 0.7936 | 0.8193 | 0.7682 | 0.8134 | 0.7737 |
0.899 | 1.85 | 9000 | 2.2002 | 0.7851 | 0.8210 | 0.7730 | 0.7953 | 0.7652 |
0.9245 | 1.87 | 9100 | 2.2205 | 0.7859 | 0.8101 | 0.7733 | 0.7943 | 0.7728 |
0.8995 | 1.89 | 9200 | 2.1935 | 0.7911 | 0.8138 | 0.7641 | 0.8070 | 0.7768 |
0.93 | 1.91 | 9300 | 2.2196 | 0.7914 | 0.8155 | 0.7631 | 0.8069 | 0.7775 |
0.907 | 1.93 | 9400 | 2.2215 | 0.7789 | 0.8145 | 0.7679 | 0.7849 | 0.7627 |
0.8992 | 1.95 | 9500 | 2.2275 | 0.7875 | 0.8199 | 0.7781 | 0.7892 | 0.7762 |
0.9059 | 1.97 | 9600 | 2.2945 | 0.7876 | 0.8162 | 0.7641 | 0.8002 | 0.7730 |
0.9295 | 1.99 | 9700 | 2.1552 | 0.8000 | 0.8159 | 0.7723 | 0.8119 | 0.7930 |
0.8544 | 2.01 | 9800 | 2.1454 | 0.8080 | 0.8176 | 0.7740 | 0.8201 | 0.8060 |
0.8841 | 2.04 | 9900 | 2.2164 | 0.8075 | 0.8097 | 0.7703 | 0.8200 | 0.8097 |
0.8506 | 2.06 | 10000 | 2.2387 | 0.8003 | 0.8244 | 0.7713 | 0.8056 | 0.7970 |
0.8579 | 2.08 | 10100 | 2.3264 | 0.7929 | 0.8213 | 0.7723 | 0.7953 | 0.7873 |
0.8637 | 2.1 | 10200 | 2.2584 | 0.8024 | 0.8220 | 0.7767 | 0.8139 | 0.7936 |
0.8508 | 2.12 | 10300 | 2.2788 | 0.8007 | 0.8257 | 0.7822 | 0.8063 | 0.7923 |
0.8715 | 2.14 | 10400 | 2.2355 | 0.7968 | 0.8223 | 0.7791 | 0.8078 | 0.7826 |
0.871 | 2.16 | 10500 | 2.2426 | 0.8070 | 0.8223 | 0.7726 | 0.8211 | 0.8008 |
0.8411 | 2.18 | 10600 | 2.1546 | 0.8122 | 0.8264 | 0.7869 | 0.8248 | 0.8042 |
0.8626 | 2.2 | 10700 | 2.2479 | 0.7977 | 0.8237 | 0.7811 | 0.8083 | 0.7830 |
0.8205 | 2.22 | 10800 | 2.2932 | 0.7933 | 0.8281 | 0.7818 | 0.7960 | 0.7809 |
0.867 | 2.24 | 10900 | 2.2858 | 0.7965 | 0.8281 | 0.7713 | 0.8060 | 0.7842 |
0.8408 | 2.26 | 11000 | 2.3154 | 0.7938 | 0.8251 | 0.7777 | 0.7982 | 0.7829 |
0.8302 | 2.28 | 11100 | 2.3049 | 0.8007 | 0.8206 | 0.7713 | 0.8048 | 0.8007 |
0.853 | 2.3 | 11200 | 2.2952 | 0.7971 | 0.8203 | 0.7740 | 0.8078 | 0.7863 |
0.8477 | 2.32 | 11300 | 2.3139 | 0.7987 | 0.8230 | 0.7740 | 0.8063 | 0.7913 |
0.8722 | 2.34 | 11400 | 2.3023 | 0.8040 | 0.8196 | 0.7839 | 0.8150 | 0.7948 |
0.8311 | 2.36 | 11500 | 2.2636 | 0.8039 | 0.8274 | 0.7716 | 0.8167 | 0.7947 |
0.852 | 2.38 | 11600 | 2.3364 | 0.7968 | 0.8271 | 0.7852 | 0.7998 | 0.7859 |
0.8439 | 2.41 | 11700 | 2.2759 | 0.8096 | 0.8302 | 0.7794 | 0.8217 | 0.8016 |
0.8634 | 2.43 | 11800 | 2.2756 | 0.8086 | 0.8322 | 0.7856 | 0.8167 | 0.8004 |
0.8459 | 2.45 | 11900 | 2.3332 | 0.8031 | 0.8359 | 0.7907 | 0.8059 | 0.7919 |
0.8442 | 2.47 | 12000 | 2.2203 | 0.8144 | 0.8305 | 0.7818 | 0.8212 | 0.8146 |
0.8568 | 2.49 | 12100 | 2.2801 | 0.8128 | 0.8298 | 0.7818 | 0.8244 | 0.8072 |
0.85 | 2.51 | 12200 | 2.2593 | 0.8105 | 0.8349 | 0.7788 | 0.8256 | 0.7985 |
0.8488 | 2.53 | 12300 | 2.3030 | 0.8070 | 0.8339 | 0.7832 | 0.8188 | 0.7938 |
0.8396 | 2.55 | 12400 | 2.3401 | 0.8075 | 0.8319 | 0.7886 | 0.8143 | 0.7985 |
0.8356 | 2.57 | 12500 | 2.3624 | 0.8014 | 0.8257 | 0.7866 | 0.8097 | 0.7892 |
0.837 | 2.59 | 12600 | 2.2319 | 0.8132 | 0.8346 | 0.7828 | 0.8200 | 0.8103 |
0.8182 | 2.61 | 12700 | 2.3508 | 0.8052 | 0.8353 | 0.7808 | 0.8109 | 0.7971 |
0.8606 | 2.63 | 12800 | 2.2532 | 0.8135 | 0.8336 | 0.7839 | 0.8215 | 0.8095 |
0.8351 | 2.65 | 12900 | 2.2698 | 0.8106 | 0.8329 | 0.7852 | 0.8174 | 0.8051 |
0.8644 | 2.67 | 13000 | 2.2778 | 0.8107 | 0.8295 | 0.7828 | 0.8232 | 0.8021 |
0.8329 | 2.69 | 13100 | 2.3148 | 0.8098 | 0.8295 | 0.7815 | 0.8220 | 0.8012 |
0.8511 | 2.71 | 13200 | 2.2813 | 0.8156 | 0.8298 | 0.7876 | 0.8279 | 0.8090 |
0.8515 | 2.73 | 13300 | 2.3368 | 0.8103 | 0.8305 | 0.7815 | 0.8201 | 0.8041 |
0.8508 | 2.75 | 13400 | 2.2901 | 0.8140 | 0.8349 | 0.7845 | 0.8258 | 0.8059 |
0.8137 | 2.78 | 13500 | 2.3257 | 0.8103 | 0.8325 | 0.7866 | 0.8225 | 0.7987 |
0.8245 | 2.8 | 13600 | 2.2869 | 0.8133 | 0.8315 | 0.7818 | 0.8286 | 0.8036 |
0.8331 | 2.82 | 13700 | 2.2841 | 0.8156 | 0.8319 | 0.7822 | 0.8286 | 0.8099 |
0.8631 | 2.84 | 13800 | 2.2477 | 0.8179 | 0.8298 | 0.7811 | 0.8309 | 0.8153 |
0.8706 | 2.86 | 13900 | 2.2819 | 0.8144 | 0.8298 | 0.7818 | 0.8273 | 0.8086 |
0.8285 | 2.88 | 14000 | 2.2931 | 0.8142 | 0.8305 | 0.7801 | 0.8271 | 0.8087 |
0.8276 | 2.9 | 14100 | 2.3131 | 0.8117 | 0.8308 | 0.7784 | 0.8239 | 0.8053 |
0.8384 | 2.92 | 14200 | 2.2840 | 0.8157 | 0.8319 | 0.7805 | 0.8281 | 0.8113 |
0.8176 | 2.94 | 14300 | 2.2765 | 0.8164 | 0.8346 | 0.7822 | 0.8275 | 0.8120 |
0.8298 | 2.96 | 14400 | 2.3124 | 0.8135 | 0.8336 | 0.7818 | 0.8241 | 0.8079 |
0.8386 | 2.98 | 14500 | 2.3068 | 0.8136 | 0.8332 | 0.7825 | 0.8251 | 0.8069 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3