generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

metal-graphcodebert-base-2

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Text Start Acc Text End Acc Code Start Acc Code End Acc
3.4743 0.02 100 3.0823 0.4416 0.1307 0.0943 0.5789 0.5790
3.0861 0.04 200 2.8571 0.4655 0.2151 0.1501 0.5843 0.5828
2.762 0.06 300 2.6350 0.4493 0.3091 0.2056 0.5249 0.5339
2.3937 0.08 400 2.5547 0.4035 0.3499 0.2832 0.4801 0.3994
2.039 0.1 500 2.4216 0.4698 0.3931 0.3074 0.5351 0.5043
1.7947 0.12 600 2.2881 0.5117 0.4316 0.3281 0.5715 0.5618
1.6689 0.14 700 2.4587 0.4614 0.4118 0.3233 0.5141 0.4869
1.6099 0.16 800 2.4045 0.4840 0.4346 0.3781 0.5167 0.5160
1.5396 0.19 900 2.3508 0.5174 0.4496 0.3839 0.5553 0.5635
1.543 0.21 1000 2.2789 0.5236 0.4554 0.4095 0.5631 0.5603
1.4762 0.23 1100 2.2925 0.5332 0.4908 0.4057 0.5709 0.5662
1.4793 0.25 1200 2.3588 0.5128 0.4833 0.4255 0.5357 0.5387
1.3458 0.27 1300 2.2338 0.5748 0.5102 0.4639 0.6120 0.6110
1.3581 0.29 1400 2.2887 0.5627 0.5664 0.4752 0.5784 0.5820
1.3424 0.31 1500 2.3569 0.5493 0.5408 0.4666 0.5725 0.5642
1.3326 0.33 1600 2.1865 0.5975 0.5636 0.4792 0.6230 0.6354
1.2903 0.35 1700 2.3987 0.5717 0.5963 0.5265 0.5721 0.5800
1.2725 0.37 1800 2.2467 0.5949 0.6113 0.5252 0.6051 0.6068
1.2446 0.39 1900 2.3638 0.5929 0.6368 0.5456 0.5924 0.5948
1.242 0.41 2000 2.2359 0.6175 0.6225 0.5507 0.6304 0.6303
1.2096 0.43 2100 2.1869 0.6336 0.6572 0.5824 0.6528 0.6257
1.2203 0.45 2200 2.1308 0.6526 0.6644 0.6014 0.6584 0.6634
1.1875 0.47 2300 2.1421 0.6522 0.6722 0.6011 0.6723 0.6450
1.1764 0.49 2400 2.1617 0.6640 0.6882 0.6031 0.6714 0.6717
1.1718 0.51 2500 2.2392 0.6718 0.7063 0.6123 0.6898 0.6643
1.1809 0.53 2600 2.1576 0.6710 0.7182 0.6331 0.6815 0.6565
1.1286 0.56 2700 2.2907 0.6760 0.6675 0.6059 0.7013 0.6837
1.1469 0.58 2800 2.2763 0.6437 0.7172 0.6378 0.6368 0.6223
1.1246 0.6 2900 2.1459 0.7003 0.7042 0.6280 0.7270 0.7021
1.1419 0.62 3000 2.4165 0.6374 0.7233 0.6477 0.6250 0.6095
1.1509 0.64 3100 2.0643 0.7146 0.7366 0.6453 0.7467 0.7021
1.101 0.66 3200 2.2032 0.6953 0.7209 0.6569 0.7054 0.6905
1.1073 0.68 3300 2.2400 0.6986 0.7318 0.6767 0.6933 0.6993
1.0996 0.7 3400 2.1097 0.6972 0.7284 0.6637 0.6962 0.6993
1.0855 0.72 3500 2.2480 0.6894 0.7338 0.6644 0.6956 0.6750
1.1079 0.74 3600 2.0058 0.7267 0.7389 0.6787 0.7386 0.7298
1.0546 0.76 3700 2.3854 0.6602 0.7423 0.6920 0.6612 0.6117
1.0823 0.78 3800 2.1042 0.6988 0.7376 0.6726 0.6997 0.6926
1.0537 0.8 3900 2.1368 0.7034 0.7383 0.6760 0.7176 0.6861
1.0522 0.82 4000 2.2278 0.6967 0.7383 0.6780 0.7062 0.6776
1.0453 0.84 4100 2.1500 0.7317 0.7543 0.6903 0.7508 0.7206
1.0618 0.86 4200 2.1483 0.7210 0.7471 0.6869 0.7264 0.7190
1.0459 0.88 4300 2.2713 0.7142 0.7526 0.7046 0.7233 0.6930
1.0491 0.9 4400 2.1303 0.7223 0.7699 0.7063 0.7368 0.6947
1.0429 0.93 4500 2.1760 0.7148 0.7474 0.6814 0.7304 0.6996
1.0515 0.95 4600 2.2770 0.7030 0.7536 0.6926 0.7085 0.6807
1.0367 0.97 4700 2.0381 0.7520 0.7706 0.7240 0.7681 0.7399
1.0 0.99 4800 2.1916 0.7363 0.7740 0.7134 0.7521 0.7145
1.0128 1.01 4900 2.1998 0.7292 0.7573 0.7114 0.7457 0.7084
0.9786 1.03 5000 2.0550 0.7588 0.7914 0.7229 0.7673 0.7517
0.9996 1.05 5100 1.9935 0.7725 0.7910 0.7291 0.7859 0.7694
0.9709 1.07 5200 2.0956 0.7700 0.7869 0.7335 0.7819 0.7663
0.9677 1.09 5300 2.1409 0.7561 0.7784 0.7386 0.7522 0.7581
1.0005 1.11 5400 2.2058 0.7598 0.7890 0.7359 0.7744 0.7431
0.97 1.13 5500 2.1241 0.7428 0.7801 0.7338 0.7477 0.7261
0.9657 1.15 5600 2.2431 0.7407 0.7893 0.7287 0.7420 0.7240
0.9704 1.17 5700 2.0821 0.7730 0.7842 0.7338 0.7953 0.7623
0.9548 1.19 5800 2.1463 0.7667 0.7883 0.7332 0.7748 0.7635
0.9653 1.21 5900 2.1542 0.7690 0.7958 0.7246 0.7845 0.7609
0.9399 1.23 6000 2.2528 0.7548 0.7968 0.7447 0.7532 0.7430
0.963 1.25 6100 2.1844 0.7595 0.7869 0.7457 0.7633 0.7500
0.9839 1.27 6200 2.0998 0.7791 0.8057 0.7485 0.7848 0.7751
0.9686 1.3 6300 2.3197 0.7276 0.7856 0.7291 0.7210 0.7094
0.9572 1.32 6400 2.3235 0.7449 0.8043 0.7509 0.7379 0.7247
0.9563 1.34 6500 2.1890 0.7690 0.7937 0.7474 0.7751 0.7616
0.9459 1.36 6600 2.1680 0.7521 0.7958 0.7362 0.7635 0.7292
0.9454 1.38 6700 2.2111 0.7647 0.7968 0.7539 0.7666 0.7538
0.958 1.4 6800 2.1828 0.7769 0.8016 0.7410 0.7852 0.7734
0.9363 1.42 6900 2.1966 0.7536 0.7992 0.7549 0.7466 0.7410
0.9458 1.44 7000 2.2366 0.7523 0.7917 0.7366 0.7538 0.7409
0.9321 1.46 7100 2.3037 0.7575 0.8060 0.7515 0.7521 0.7451
0.9544 1.48 7200 2.3062 0.7478 0.8091 0.7617 0.7466 0.7177
0.9267 1.5 7300 2.2160 0.7721 0.8036 0.7526 0.7805 0.7588
0.935 1.52 7400 2.2067 0.7727 0.8159 0.7631 0.7772 0.7542
0.9499 1.54 7500 2.2124 0.7782 0.8074 0.7594 0.7839 0.7683
0.9079 1.56 7600 2.2166 0.7700 0.8104 0.7563 0.7808 0.7480
0.9051 1.58 7700 2.2090 0.7729 0.8022 0.7498 0.7795 0.7637
0.9216 1.6 7800 2.3149 0.7586 0.8138 0.7590 0.7504 0.7436
0.9407 1.62 7900 2.1924 0.7791 0.8118 0.7607 0.7874 0.7649
0.9299 1.64 8000 2.1380 0.7848 0.8101 0.7577 0.8042 0.7663
0.9199 1.67 8100 2.2997 0.7673 0.7971 0.7461 0.7805 0.7504
0.9218 1.69 8200 2.1245 0.7887 0.8104 0.7651 0.7985 0.7798
0.9117 1.71 8300 2.1066 0.7941 0.8053 0.7563 0.8051 0.7943
0.8925 1.73 8400 2.1668 0.7858 0.8121 0.7675 0.7907 0.7775
0.9306 1.75 8500 2.2660 0.7697 0.8155 0.7720 0.7659 0.7534
0.8981 1.77 8600 2.1441 0.7958 0.8189 0.7777 0.7999 0.7894
0.9366 1.79 8700 2.2896 0.7758 0.8206 0.7737 0.7767 0.7572
0.8987 1.81 8800 2.2486 0.7799 0.8118 0.7600 0.7849 0.7698
0.8988 1.83 8900 2.2265 0.7936 0.8193 0.7682 0.8134 0.7737
0.899 1.85 9000 2.2002 0.7851 0.8210 0.7730 0.7953 0.7652
0.9245 1.87 9100 2.2205 0.7859 0.8101 0.7733 0.7943 0.7728
0.8995 1.89 9200 2.1935 0.7911 0.8138 0.7641 0.8070 0.7768
0.93 1.91 9300 2.2196 0.7914 0.8155 0.7631 0.8069 0.7775
0.907 1.93 9400 2.2215 0.7789 0.8145 0.7679 0.7849 0.7627
0.8992 1.95 9500 2.2275 0.7875 0.8199 0.7781 0.7892 0.7762
0.9059 1.97 9600 2.2945 0.7876 0.8162 0.7641 0.8002 0.7730
0.9295 1.99 9700 2.1552 0.8000 0.8159 0.7723 0.8119 0.7930
0.8544 2.01 9800 2.1454 0.8080 0.8176 0.7740 0.8201 0.8060
0.8841 2.04 9900 2.2164 0.8075 0.8097 0.7703 0.8200 0.8097
0.8506 2.06 10000 2.2387 0.8003 0.8244 0.7713 0.8056 0.7970
0.8579 2.08 10100 2.3264 0.7929 0.8213 0.7723 0.7953 0.7873
0.8637 2.1 10200 2.2584 0.8024 0.8220 0.7767 0.8139 0.7936
0.8508 2.12 10300 2.2788 0.8007 0.8257 0.7822 0.8063 0.7923
0.8715 2.14 10400 2.2355 0.7968 0.8223 0.7791 0.8078 0.7826
0.871 2.16 10500 2.2426 0.8070 0.8223 0.7726 0.8211 0.8008
0.8411 2.18 10600 2.1546 0.8122 0.8264 0.7869 0.8248 0.8042
0.8626 2.2 10700 2.2479 0.7977 0.8237 0.7811 0.8083 0.7830
0.8205 2.22 10800 2.2932 0.7933 0.8281 0.7818 0.7960 0.7809
0.867 2.24 10900 2.2858 0.7965 0.8281 0.7713 0.8060 0.7842
0.8408 2.26 11000 2.3154 0.7938 0.8251 0.7777 0.7982 0.7829
0.8302 2.28 11100 2.3049 0.8007 0.8206 0.7713 0.8048 0.8007
0.853 2.3 11200 2.2952 0.7971 0.8203 0.7740 0.8078 0.7863
0.8477 2.32 11300 2.3139 0.7987 0.8230 0.7740 0.8063 0.7913
0.8722 2.34 11400 2.3023 0.8040 0.8196 0.7839 0.8150 0.7948
0.8311 2.36 11500 2.2636 0.8039 0.8274 0.7716 0.8167 0.7947
0.852 2.38 11600 2.3364 0.7968 0.8271 0.7852 0.7998 0.7859
0.8439 2.41 11700 2.2759 0.8096 0.8302 0.7794 0.8217 0.8016
0.8634 2.43 11800 2.2756 0.8086 0.8322 0.7856 0.8167 0.8004
0.8459 2.45 11900 2.3332 0.8031 0.8359 0.7907 0.8059 0.7919
0.8442 2.47 12000 2.2203 0.8144 0.8305 0.7818 0.8212 0.8146
0.8568 2.49 12100 2.2801 0.8128 0.8298 0.7818 0.8244 0.8072
0.85 2.51 12200 2.2593 0.8105 0.8349 0.7788 0.8256 0.7985
0.8488 2.53 12300 2.3030 0.8070 0.8339 0.7832 0.8188 0.7938
0.8396 2.55 12400 2.3401 0.8075 0.8319 0.7886 0.8143 0.7985
0.8356 2.57 12500 2.3624 0.8014 0.8257 0.7866 0.8097 0.7892
0.837 2.59 12600 2.2319 0.8132 0.8346 0.7828 0.8200 0.8103
0.8182 2.61 12700 2.3508 0.8052 0.8353 0.7808 0.8109 0.7971
0.8606 2.63 12800 2.2532 0.8135 0.8336 0.7839 0.8215 0.8095
0.8351 2.65 12900 2.2698 0.8106 0.8329 0.7852 0.8174 0.8051
0.8644 2.67 13000 2.2778 0.8107 0.8295 0.7828 0.8232 0.8021
0.8329 2.69 13100 2.3148 0.8098 0.8295 0.7815 0.8220 0.8012
0.8511 2.71 13200 2.2813 0.8156 0.8298 0.7876 0.8279 0.8090
0.8515 2.73 13300 2.3368 0.8103 0.8305 0.7815 0.8201 0.8041
0.8508 2.75 13400 2.2901 0.8140 0.8349 0.7845 0.8258 0.8059
0.8137 2.78 13500 2.3257 0.8103 0.8325 0.7866 0.8225 0.7987
0.8245 2.8 13600 2.2869 0.8133 0.8315 0.7818 0.8286 0.8036
0.8331 2.82 13700 2.2841 0.8156 0.8319 0.7822 0.8286 0.8099
0.8631 2.84 13800 2.2477 0.8179 0.8298 0.7811 0.8309 0.8153
0.8706 2.86 13900 2.2819 0.8144 0.8298 0.7818 0.8273 0.8086
0.8285 2.88 14000 2.2931 0.8142 0.8305 0.7801 0.8271 0.8087
0.8276 2.9 14100 2.3131 0.8117 0.8308 0.7784 0.8239 0.8053
0.8384 2.92 14200 2.2840 0.8157 0.8319 0.7805 0.8281 0.8113
0.8176 2.94 14300 2.2765 0.8164 0.8346 0.7822 0.8275 0.8120
0.8298 2.96 14400 2.3124 0.8135 0.8336 0.7818 0.8241 0.8079
0.8386 2.98 14500 2.3068 0.8136 0.8332 0.7825 0.8251 0.8069

Framework versions