RoBERTa-base (1B-1) + SQuAD v1 โ
roberta-base-1B-1 fine-tuned on SQUAD v1.1 dataset for Q&A downstream task.
Details of the downstream task (Q&A) - Model ๐ง
RoBERTa Pretrained on Smaller Datasets
NYU Machine Learning for Language pretrained RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). They released 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: They combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1.
Details of the downstream task (Q&A) - Dataset ๐
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD v1.1 contains 100,000+ question-answer pairs on 500+ articles.
Model training ๐๏ธโ
The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command:
python transformers/examples/question-answering/run_squad.py \
--model_type roberta \
--model_name_or_path 'nyu-mll/roberta-base-1B-1' \
--do_eval \
--do_train \
--do_lower_case \
--train_file /content/dataset/train-v1.1.json \
--predict_file /content/dataset/dev-v1.1.json \
--per_gpu_train_batch_size 16 \
--learning_rate 3e-5 \
--num_train_epochs 10 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir /content/output \
--overwrite_output_dir \
--save_steps 1000
Test set Results ๐งพ
Metric | # Value |
---|---|
EM | 72.62 |
F1 | 82.19 |
{
'exact': 72.62062440870388,
'f1': 82.19430877136834,
'total': 10570,
'HasAns_exact': 72.62062440870388,
'HasAns_f1': 82.19430877136834,
'HasAns_total': 10570,
'best_exact': 72.62062440870388,
'best_exact_thresh': 0.0,
'best_f1': 82.19430877136834,
'best_f1_thresh': 0.0
}
Model in action ๐
Fast usage with pipelines:
from transformers import pipeline
QnA_pipeline = pipeline('question-answering', model='mrm8488/roberta-base-1B-1-finetuned-squadv1')
QnA_pipeline({
'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.',
'question': 'What has been discovered by scientists from China ?'
})
# Output:
{'answer': 'A new strain of flu', 'end': 19, 'score': 0.04702283976040074, 'start': 0}
Created by Manuel Romero/@mrm8488 | LinkedIn Made with <span style="color: #e25555;">โฅ</span> in Spain