<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-large-binary-isic-sharpened-patch-16
This model is a fine-tuned version of google/vit-large-patch16-224-in21k on the ahishamm/isic_binary_sharpened dataset. It achieves the following results on the evaluation set:
- Loss: 0.2934
- Accuracy: 0.8585
- Recall: 0.8585
- F1: 0.8585
- Precision: 0.8585
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision |
---|---|---|---|---|---|---|---|
0.5213 | 0.09 | 100 | 0.4459 | 0.7638 | 0.7638 | 0.7638 | 0.7638 |
0.4388 | 0.18 | 200 | 0.5329 | 0.7869 | 0.7869 | 0.7869 | 0.7869 |
0.4157 | 0.28 | 300 | 0.4438 | 0.7713 | 0.7713 | 0.7713 | 0.7713 |
0.4578 | 0.37 | 400 | 0.4327 | 0.7652 | 0.7652 | 0.7652 | 0.7652 |
0.4322 | 0.46 | 500 | 0.4179 | 0.7897 | 0.7897 | 0.7897 | 0.7897 |
0.4258 | 0.55 | 600 | 0.4319 | 0.7979 | 0.7979 | 0.7979 | 0.7979 |
0.3156 | 0.65 | 700 | 0.4470 | 0.7729 | 0.7729 | 0.7729 | 0.7729 |
0.449 | 0.74 | 800 | 0.4223 | 0.8036 | 0.8036 | 0.8036 | 0.8036 |
0.464 | 0.83 | 900 | 0.4304 | 0.7814 | 0.7814 | 0.7814 | 0.7814 |
0.2522 | 0.92 | 1000 | 0.4755 | 0.8069 | 0.8069 | 0.8069 | 0.8069 |
0.3268 | 1.02 | 1100 | 0.3678 | 0.8119 | 0.8119 | 0.8119 | 0.8119 |
0.3374 | 1.11 | 1200 | 0.3609 | 0.8324 | 0.8324 | 0.8324 | 0.8324 |
0.3814 | 1.2 | 1300 | 0.3524 | 0.8393 | 0.8393 | 0.8393 | 0.8393 |
0.4162 | 1.29 | 1400 | 0.3600 | 0.8314 | 0.8314 | 0.8314 | 0.8314 |
0.3096 | 1.39 | 1500 | 0.3537 | 0.8405 | 0.8405 | 0.8405 | 0.8405 |
0.285 | 1.48 | 1600 | 0.3812 | 0.8234 | 0.8234 | 0.8234 | 0.8234 |
0.3039 | 1.57 | 1700 | 0.4491 | 0.8259 | 0.8259 | 0.8259 | 0.8259 |
0.3026 | 1.66 | 1800 | 0.3793 | 0.8155 | 0.8155 | 0.8155 | 0.8155 |
0.2304 | 1.76 | 1900 | 0.3488 | 0.8175 | 0.8175 | 0.8175 | 0.8175 |
0.2454 | 1.85 | 2000 | 0.3442 | 0.8357 | 0.8357 | 0.8357 | 0.8357 |
0.314 | 1.94 | 2100 | 0.3470 | 0.8370 | 0.8370 | 0.8370 | 0.8370 |
0.3015 | 2.03 | 2200 | 0.3263 | 0.8501 | 0.8501 | 0.8501 | 0.8501 |
0.2595 | 2.13 | 2300 | 0.3540 | 0.8425 | 0.8425 | 0.8425 | 0.8425 |
0.2901 | 2.22 | 2400 | 0.3567 | 0.8578 | 0.8578 | 0.8578 | 0.8578 |
0.1825 | 2.31 | 2500 | 0.2934 | 0.8585 | 0.8585 | 0.8585 | 0.8585 |
0.2558 | 2.4 | 2600 | 0.3281 | 0.8378 | 0.8378 | 0.8378 | 0.8378 |
0.2553 | 2.5 | 2700 | 0.3869 | 0.8306 | 0.8306 | 0.8306 | 0.8306 |
0.1911 | 2.59 | 2800 | 0.3586 | 0.8341 | 0.8341 | 0.8341 | 0.8341 |
0.1705 | 2.68 | 2900 | 0.3363 | 0.8576 | 0.8576 | 0.8576 | 0.8576 |
0.2686 | 2.77 | 3000 | 0.3378 | 0.8535 | 0.8535 | 0.8535 | 0.8535 |
0.2136 | 2.87 | 3100 | 0.3312 | 0.8676 | 0.8676 | 0.8676 | 0.8676 |
0.1913 | 2.96 | 3200 | 0.3305 | 0.8560 | 0.8560 | 0.8560 | 0.8560 |
0.3307 | 3.05 | 3300 | 0.3613 | 0.8675 | 0.8675 | 0.8675 | 0.8675 |
0.2204 | 3.14 | 3400 | 0.3567 | 0.8652 | 0.8652 | 0.8652 | 0.8652 |
0.2149 | 3.23 | 3500 | 0.3178 | 0.8706 | 0.8706 | 0.8706 | 0.8706 |
0.1389 | 3.33 | 3600 | 0.3123 | 0.8706 | 0.8706 | 0.8706 | 0.8706 |
0.1567 | 3.42 | 3700 | 0.3374 | 0.8669 | 0.8669 | 0.8669 | 0.8669 |
0.1871 | 3.51 | 3800 | 0.3450 | 0.8701 | 0.8701 | 0.8701 | 0.8701 |
0.1616 | 3.6 | 3900 | 0.3870 | 0.8608 | 0.8608 | 0.8608 | 0.8608 |
0.1582 | 3.7 | 4000 | 0.3490 | 0.8656 | 0.8656 | 0.8656 | 0.8656 |
0.1199 | 3.79 | 4100 | 0.3408 | 0.8684 | 0.8684 | 0.8684 | 0.8684 |
0.1563 | 3.88 | 4200 | 0.3498 | 0.8669 | 0.8669 | 0.8669 | 0.8669 |
0.1544 | 3.97 | 4300 | 0.3398 | 0.8708 | 0.8708 | 0.8708 | 0.8708 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3