<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
wav2vec2_100k_gtzan_30s_model
This model is a fine-tuned version of facebook/wav2vec2-base-100k-voxpopuli on the gtzan dataset. It achieves the following results on the evaluation set:
- Loss: 0.7521
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.3029 | 0.96 | 18 | 2.2991 | 0.13 |
2.3007 | 1.97 | 37 | 2.2918 | 0.19 |
2.291 | 2.99 | 56 | 2.2724 | 0.205 |
2.2699 | 4.0 | 75 | 2.2258 | 0.5 |
2.2279 | 4.96 | 93 | 2.1607 | 0.495 |
2.1577 | 5.97 | 112 | 2.0832 | 0.56 |
2.1112 | 6.99 | 131 | 2.0094 | 0.63 |
2.0496 | 8.0 | 150 | 1.9826 | 0.585 |
2.0083 | 8.96 | 168 | 1.9011 | 0.64 |
1.9334 | 9.97 | 187 | 1.8251 | 0.665 |
1.8594 | 10.99 | 206 | 1.7503 | 0.725 |
1.7628 | 12.0 | 225 | 1.6975 | 0.705 |
1.7181 | 12.96 | 243 | 1.6342 | 0.725 |
1.6974 | 13.97 | 262 | 1.6195 | 0.71 |
1.5742 | 14.99 | 281 | 1.5393 | 0.705 |
1.5287 | 16.0 | 300 | 1.4877 | 0.755 |
1.4624 | 16.96 | 318 | 1.4462 | 0.775 |
1.4166 | 17.97 | 337 | 1.4250 | 0.765 |
1.3848 | 18.99 | 356 | 1.3846 | 0.765 |
1.3146 | 20.0 | 375 | 1.3571 | 0.7 |
1.2487 | 20.96 | 393 | 1.3178 | 0.715 |
1.2577 | 21.97 | 412 | 1.2669 | 0.785 |
1.1904 | 22.99 | 431 | 1.3072 | 0.675 |
1.1622 | 24.0 | 450 | 1.1917 | 0.8 |
1.0907 | 24.96 | 468 | 1.2082 | 0.785 |
1.0616 | 25.97 | 487 | 1.1552 | 0.77 |
1.0685 | 26.99 | 506 | 1.1241 | 0.77 |
1.0347 | 28.0 | 525 | 1.0956 | 0.78 |
0.9509 | 28.96 | 543 | 1.1258 | 0.675 |
0.9214 | 29.97 | 562 | 1.0752 | 0.77 |
0.8702 | 30.99 | 581 | 0.9911 | 0.795 |
0.8051 | 32.0 | 600 | 0.9489 | 0.835 |
0.7605 | 32.96 | 618 | 0.9337 | 0.845 |
0.7375 | 33.97 | 637 | 0.9252 | 0.84 |
0.7216 | 34.99 | 656 | 0.9157 | 0.81 |
0.6805 | 36.0 | 675 | 0.9085 | 0.825 |
0.6951 | 36.96 | 693 | 0.9061 | 0.805 |
0.6449 | 37.97 | 712 | 0.8635 | 0.82 |
0.5744 | 38.99 | 731 | 0.9587 | 0.785 |
0.5572 | 40.0 | 750 | 0.8449 | 0.81 |
0.5612 | 40.96 | 768 | 0.8369 | 0.815 |
0.5587 | 41.97 | 787 | 0.8803 | 0.805 |
0.4815 | 42.99 | 806 | 0.8362 | 0.82 |
0.4959 | 44.0 | 825 | 0.8096 | 0.82 |
0.4814 | 44.96 | 843 | 0.8324 | 0.795 |
0.4919 | 45.97 | 862 | 0.8260 | 0.81 |
0.4346 | 46.99 | 881 | 0.7959 | 0.83 |
0.4054 | 48.0 | 900 | 0.8164 | 0.815 |
0.412 | 48.96 | 918 | 0.8323 | 0.805 |
0.3606 | 49.97 | 937 | 0.8643 | 0.79 |
0.397 | 50.99 | 956 | 0.7615 | 0.815 |
0.3617 | 52.0 | 975 | 0.6882 | 0.845 |
0.3149 | 52.96 | 993 | 0.6932 | 0.855 |
0.3533 | 53.97 | 1012 | 0.7074 | 0.85 |
0.3571 | 54.99 | 1031 | 0.7530 | 0.82 |
0.2958 | 56.0 | 1050 | 0.7798 | 0.835 |
0.3252 | 56.96 | 1068 | 0.7529 | 0.84 |
0.2765 | 57.97 | 1087 | 0.6861 | 0.87 |
0.2507 | 58.99 | 1106 | 0.7312 | 0.84 |
0.2244 | 60.0 | 1125 | 0.7683 | 0.82 |
0.235 | 60.96 | 1143 | 0.7951 | 0.82 |
0.253 | 61.97 | 1162 | 0.7510 | 0.835 |
0.2315 | 62.99 | 1181 | 0.6601 | 0.865 |
0.1917 | 64.0 | 1200 | 0.7012 | 0.84 |
0.2324 | 64.96 | 1218 | 0.8034 | 0.835 |
0.1872 | 65.97 | 1237 | 0.7210 | 0.845 |
0.1637 | 66.99 | 1256 | 0.7287 | 0.835 |
0.204 | 68.0 | 1275 | 0.8114 | 0.82 |
0.1542 | 68.96 | 1293 | 0.7838 | 0.825 |
0.1917 | 69.97 | 1312 | 0.6852 | 0.86 |
0.1574 | 70.99 | 1331 | 0.7114 | 0.85 |
0.1504 | 72.0 | 1350 | 0.7699 | 0.84 |
0.1462 | 72.96 | 1368 | 0.7432 | 0.835 |
0.1429 | 73.97 | 1387 | 0.7172 | 0.855 |
0.1063 | 74.99 | 1406 | 0.7108 | 0.855 |
0.17 | 76.0 | 1425 | 0.6909 | 0.855 |
0.1329 | 76.96 | 1443 | 0.7127 | 0.85 |
0.1316 | 77.97 | 1462 | 0.7241 | 0.845 |
0.1106 | 78.99 | 1481 | 0.7457 | 0.84 |
0.1317 | 80.0 | 1500 | 0.6769 | 0.85 |
0.1245 | 80.96 | 1518 | 0.7100 | 0.84 |
0.1123 | 81.97 | 1537 | 0.7295 | 0.85 |
0.1343 | 82.99 | 1556 | 0.7960 | 0.83 |
0.1038 | 84.0 | 1575 | 0.7629 | 0.835 |
0.1732 | 84.96 | 1593 | 0.7197 | 0.845 |
0.0968 | 85.97 | 1612 | 0.7066 | 0.855 |
0.116 | 86.99 | 1631 | 0.7322 | 0.845 |
0.1127 | 88.0 | 1650 | 0.7619 | 0.85 |
0.1043 | 88.96 | 1668 | 0.7250 | 0.85 |
0.0946 | 89.97 | 1687 | 0.7809 | 0.83 |
0.1108 | 90.99 | 1706 | 0.7694 | 0.835 |
0.1031 | 92.0 | 1725 | 0.7746 | 0.83 |
0.0821 | 92.96 | 1743 | 0.8138 | 0.825 |
0.0986 | 93.97 | 1762 | 0.8004 | 0.84 |
0.1078 | 94.99 | 1781 | 0.7557 | 0.85 |
0.0944 | 96.0 | 1800 | 0.7521 | 0.85 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3