<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_vgm_v7.0
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0305
- Precision: 0.9215
- Recall: 0.9262
- F1: 0.9239
- Accuracy: 0.9961
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.39 | 100 | 0.0929 | 0.5216 | 0.3690 | 0.4322 | 0.9771 |
No log | 0.78 | 200 | 0.0626 | 0.6467 | 0.6056 | 0.6255 | 0.9829 |
No log | 1.16 | 300 | 0.0489 | 0.7337 | 0.6590 | 0.6944 | 0.9873 |
No log | 1.55 | 400 | 0.0364 | 0.7721 | 0.8015 | 0.7865 | 0.9907 |
0.0803 | 1.94 | 500 | 0.0331 | 0.8307 | 0.7990 | 0.8145 | 0.9917 |
0.0803 | 2.33 | 600 | 0.0346 | 0.8127 | 0.8168 | 0.8147 | 0.9915 |
0.0803 | 2.71 | 700 | 0.0356 | 0.7755 | 0.8524 | 0.8121 | 0.9909 |
0.0803 | 3.1 | 800 | 0.0335 | 0.8075 | 0.8753 | 0.8400 | 0.9926 |
0.0803 | 3.49 | 900 | 0.0290 | 0.8519 | 0.8779 | 0.8647 | 0.9943 |
0.0138 | 3.88 | 1000 | 0.0313 | 0.8321 | 0.8830 | 0.8568 | 0.9934 |
0.0138 | 4.26 | 1100 | 0.0295 | 0.8872 | 0.9008 | 0.8939 | 0.9949 |
0.0138 | 4.65 | 1200 | 0.0319 | 0.8313 | 0.8779 | 0.8540 | 0.9940 |
0.0138 | 5.04 | 1300 | 0.0285 | 0.8697 | 0.8830 | 0.8763 | 0.9947 |
0.0138 | 5.43 | 1400 | 0.0295 | 0.8875 | 0.9033 | 0.8953 | 0.9953 |
0.0049 | 5.81 | 1500 | 0.0305 | 0.9015 | 0.9084 | 0.9049 | 0.9954 |
0.0049 | 6.2 | 1600 | 0.0298 | 0.9003 | 0.8957 | 0.8980 | 0.9954 |
0.0049 | 6.59 | 1700 | 0.0285 | 0.9247 | 0.9059 | 0.9152 | 0.9959 |
0.0049 | 6.98 | 1800 | 0.0288 | 0.9158 | 0.9135 | 0.9146 | 0.9957 |
0.0049 | 7.36 | 1900 | 0.0269 | 0.9045 | 0.9160 | 0.9102 | 0.9963 |
0.0022 | 7.75 | 2000 | 0.0277 | 0.9102 | 0.9288 | 0.9194 | 0.9963 |
0.0022 | 8.14 | 2100 | 0.0288 | 0.91 | 0.9262 | 0.9180 | 0.9957 |
0.0022 | 8.53 | 2200 | 0.0279 | 0.9037 | 0.9313 | 0.9173 | 0.9955 |
0.0022 | 8.91 | 2300 | 0.0322 | 0.9054 | 0.9008 | 0.9031 | 0.9954 |
0.0022 | 9.3 | 2400 | 0.0317 | 0.8875 | 0.9237 | 0.9052 | 0.9951 |
0.0015 | 9.69 | 2500 | 0.0294 | 0.9005 | 0.9211 | 0.9107 | 0.9955 |
0.0015 | 10.08 | 2600 | 0.0325 | 0.8970 | 0.9084 | 0.9027 | 0.9954 |
0.0015 | 10.47 | 2700 | 0.0309 | 0.905 | 0.9211 | 0.9130 | 0.9958 |
0.0015 | 10.85 | 2800 | 0.0301 | 0.9118 | 0.9211 | 0.9165 | 0.9958 |
0.0015 | 11.24 | 2900 | 0.0287 | 0.9162 | 0.9186 | 0.9174 | 0.9961 |
0.0008 | 11.63 | 3000 | 0.0276 | 0.9258 | 0.9211 | 0.9235 | 0.9962 |
0.0008 | 12.02 | 3100 | 0.0309 | 0.9129 | 0.9338 | 0.9233 | 0.9960 |
0.0008 | 12.4 | 3200 | 0.0296 | 0.9173 | 0.9313 | 0.9242 | 0.9962 |
0.0008 | 12.79 | 3300 | 0.0295 | 0.9217 | 0.9288 | 0.9252 | 0.9962 |
0.0008 | 13.18 | 3400 | 0.0307 | 0.9190 | 0.9237 | 0.9213 | 0.9960 |
0.0004 | 13.57 | 3500 | 0.0301 | 0.9190 | 0.9237 | 0.9213 | 0.9961 |
0.0004 | 13.95 | 3600 | 0.0306 | 0.9237 | 0.9237 | 0.9237 | 0.9961 |
0.0004 | 14.34 | 3700 | 0.0306 | 0.9165 | 0.9211 | 0.9188 | 0.9960 |
0.0004 | 14.73 | 3800 | 0.0305 | 0.9215 | 0.9262 | 0.9239 | 0.9961 |
0.0004 | 15.12 | 3900 | 0.0305 | 0.9215 | 0.9262 | 0.9239 | 0.9961 |
0.0003 | 15.5 | 4000 | 0.0305 | 0.9215 | 0.9262 | 0.9239 | 0.9961 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3