<!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end -->
Koala 7B fp16
These are fp16 pytorch format model files for Koala 7B merged with Kaio Ken's SuperHOT 8K.
Kaio Ken's SuperHOT 7b LoRA is merged on to the base model, and then 8K context can be achieved during inference by using trust_remote_code=True
.
Note that config.json
has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length.
Repositories available
- 4-bit GPTQ models for GPU inference
- 2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference
- Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions
- Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions
How to use this model from Python code
First make sure you have Einops installed:
pip3 install auto-gptq
Then run the following code. config.json
has been default to a sequence length of 8192, but you can also configure this in your Python code.
The provided modelling code, activated with trust_remote_code=True
will automatically set the scale
parameter from the configured max_position_embeddings
. Eg for 8192, scale
is set to 4
.
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline
import argparse
model_name_or_path = "TheBloke/Koala-7B-SuperHOT-8K-fp16"
use_triton = False
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
# Change this to the sequence length you want
config.max_position_embeddings = 8192
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
config=config,
trust_remote_code=True,
device_map='auto')
# Note: check to confirm if this is correct prompt template is correct for this model!
prompt = "Tell me about AI"
prompt_template=f'''USER: {prompt}
ASSISTANT:'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
print(pipe(prompt_template)[0]['generated_text'])
Using other UIs: monkey patch
Provided in the repo is llama_rope_scaled_monkey_patch.py
, written by @kaiokendev.
It can be theoretically be added to any Python UI or custom code to enable the same result as trust_remote_code=True
. I have not tested this, and it should be superseded by using trust_remote_code=True
, but I include it for completeness and for interest.
<!-- footer start -->
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute.
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
Patreon special mentions: zynix, ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
Original model card: Kaio Ken's SuperHOT 8K
SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in the github blog.
Looking for Merged & Quantized Models?
Make some please :)
Using the monkey-patch?
You will NEED to apply the monkeypatch or, if you are already using the monkeypatch, change the scaling factor to 0.25 and the maximum sequence length to 8192
The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the llama_rope_scaled_monkey_patch.py
into your working directory and call the exported function replace_llama_rope_with_scaled_rope
at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
Using Oobabooga with Exllama?
Switch your loader to exllama
or exllama_hf
Add the arguments max_seq_len 8192
and compress_pos_emb 4
. While the model may work well with compress_pos_emb 2
, it was trained on 4, so that is what I advocate for you to use
Example in the command-line:
python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf
In the UI, you will see the loader option in the Models
tab. Once you select either exllama
or exllama_hf
, the max_seq_len
and compress_pos_emb
settings will appear.
Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
- Cutoff length: 4096
Original model card: Koala 7B
<!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end -->
Koala: A Dialogue Model for Academic Research
This repo contains the weights of the Koala 7B model produced at Berkeley. It is the result of combining the diffs from https://huggingface.co/young-geng/koala with the original Llama 7B model.
This version has then been converted to HF format.
My Koala repos
I have the following Koala model repositories available:
13B models:
- Unquantized 13B model in HF format
- GPTQ quantized 4bit 13B model in
pt
andsafetensors
formats - GPTQ quantized 4bit 13B model in GGML format for
llama.cpp
7B models:
- Unquantized 7B model in HF format
- Unquantized 7B model in GGML format for llama.cpp
- GPTQ quantized 4bit 7B model in
pt
andsafetensors
formats - GPTQ quantized 4bit 7B model in GGML format for
llama.cpp
How the Koala delta weights were merged
The Koala delta weights were merged using the following commands:
git clone https://github.com/young-geng/EasyLM
git clone https://huggingface.co/nyanko7/LLaMA-7B
git clone https://huggingface.co/young-geng/koala koala_diffs
cd EasyLM
PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.models.llama.convert_torch_to_easylm \
--checkpoint_dir=/content/LLaMA-7B \
--output_file=/content/llama-7B-LM \
--streaming=True
PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.scripts.diff_checkpoint --recover_diff=True \
--load_base_checkpoint='params::/content/llama-7B-LM' \
--load_target_checkpoint='params::/content/koala_diffs/koala_7b_diff_v2' \
--output_file=/content/koala_7b.diff.weights \
--streaming=True
PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.models.llama.convert_easylm_to_hf --model_size=7b \
--output_dir=/content/koala-7B-HF \
--load_checkpoint='params::/content/koala_7b.diff.weights' \
--tokenizer_path=/content/LLaMA-7B/tokenizer.model
<!-- footer start -->
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute.
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Patreon special mentions: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
Thank you to all my generous patrons and donaters! <!-- footer end -->
Further info
Check out the following links to learn more about the Berkeley Koala model.
- Blog post
- Online demo
- EasyLM: training and serving framework on GitHub
- Documentation for running Koala locally
License
The model weights are intended for academic research only, subject to the model License of LLaMA, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Any other usage of the model weights, including but not limited to commercial usage, is strictly prohibited.