<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
rhenus_v4
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.1745
- Precision: 0.8327
- Recall: 0.8452
- F1: 0.8389
- Accuracy: 0.9679
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 7000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.36 | 100 | 0.5155 | 0.2749 | 0.1025 | 0.1493 | 0.8764 |
No log | 0.73 | 200 | 0.4887 | 0.3016 | 0.1940 | 0.2361 | 0.8784 |
No log | 1.09 | 300 | 0.4188 | 0.4023 | 0.2442 | 0.3039 | 0.8965 |
No log | 1.45 | 400 | 0.3713 | 0.5075 | 0.4734 | 0.4899 | 0.9133 |
0.4041 | 1.82 | 500 | 0.3178 | 0.5643 | 0.4633 | 0.5088 | 0.9221 |
0.4041 | 2.18 | 600 | 0.2931 | 0.6100 | 0.5266 | 0.5653 | 0.9329 |
0.4041 | 2.55 | 700 | 0.2746 | 0.6217 | 0.6111 | 0.6163 | 0.9335 |
0.4041 | 2.91 | 800 | 0.2538 | 0.6453 | 0.6382 | 0.6417 | 0.9376 |
0.4041 | 3.27 | 900 | 0.2418 | 0.6686 | 0.6814 | 0.6750 | 0.9439 |
0.2007 | 3.64 | 1000 | 0.2116 | 0.6740 | 0.7045 | 0.6889 | 0.9457 |
0.2007 | 4.0 | 1100 | 0.2053 | 0.7194 | 0.7085 | 0.7139 | 0.9522 |
0.2007 | 4.36 | 1200 | 0.1878 | 0.7141 | 0.7307 | 0.7223 | 0.9521 |
0.2007 | 4.73 | 1300 | 0.1829 | 0.7356 | 0.7437 | 0.7396 | 0.9566 |
0.2007 | 5.09 | 1400 | 0.1845 | 0.7412 | 0.7598 | 0.7504 | 0.9547 |
0.1141 | 5.45 | 1500 | 0.1669 | 0.7645 | 0.7668 | 0.7657 | 0.9585 |
0.1141 | 5.82 | 1600 | 0.1767 | 0.7552 | 0.7688 | 0.7620 | 0.9572 |
0.1141 | 6.18 | 1700 | 0.1645 | 0.7880 | 0.7809 | 0.7845 | 0.9632 |
0.1141 | 6.55 | 1800 | 0.1549 | 0.7776 | 0.7940 | 0.7857 | 0.9642 |
0.1141 | 6.91 | 1900 | 0.1784 | 0.7305 | 0.8090 | 0.7678 | 0.9557 |
0.0732 | 7.27 | 2000 | 0.1684 | 0.7569 | 0.7759 | 0.7663 | 0.9569 |
0.0732 | 7.64 | 2100 | 0.1488 | 0.7870 | 0.8171 | 0.8018 | 0.9661 |
0.0732 | 8.0 | 2200 | 0.1726 | 0.7959 | 0.8231 | 0.8093 | 0.9652 |
0.0732 | 8.36 | 2300 | 0.1494 | 0.7973 | 0.8221 | 0.8095 | 0.9677 |
0.0732 | 8.73 | 2400 | 0.1750 | 0.7903 | 0.8221 | 0.8059 | 0.9641 |
0.053 | 9.09 | 2500 | 0.1806 | 0.7990 | 0.8191 | 0.8089 | 0.9630 |
0.053 | 9.45 | 2600 | 0.1644 | 0.7857 | 0.8291 | 0.8068 | 0.9652 |
0.053 | 9.82 | 2700 | 0.1878 | 0.8066 | 0.8302 | 0.8182 | 0.9644 |
0.053 | 10.18 | 2800 | 0.1717 | 0.8129 | 0.8382 | 0.8253 | 0.9674 |
0.053 | 10.55 | 2900 | 0.1731 | 0.8186 | 0.8392 | 0.8288 | 0.9688 |
0.0366 | 10.91 | 3000 | 0.1634 | 0.8133 | 0.8362 | 0.8246 | 0.9679 |
0.0366 | 11.27 | 3100 | 0.1514 | 0.8135 | 0.8332 | 0.8232 | 0.9687 |
0.0366 | 11.64 | 3200 | 0.1924 | 0.8060 | 0.8352 | 0.8203 | 0.9644 |
0.0366 | 12.0 | 3300 | 0.1665 | 0.7923 | 0.8241 | 0.8079 | 0.9649 |
0.0366 | 12.36 | 3400 | 0.1670 | 0.8214 | 0.8271 | 0.8242 | 0.9670 |
0.0275 | 12.73 | 3500 | 0.1822 | 0.8262 | 0.8362 | 0.8312 | 0.9664 |
0.0275 | 13.09 | 3600 | 0.1857 | 0.8049 | 0.8332 | 0.8188 | 0.9664 |
0.0275 | 13.45 | 3700 | 0.1648 | 0.8200 | 0.8422 | 0.8309 | 0.9642 |
0.0275 | 13.82 | 3800 | 0.1902 | 0.8086 | 0.8322 | 0.8202 | 0.9656 |
0.0275 | 14.18 | 3900 | 0.1600 | 0.8064 | 0.8372 | 0.8215 | 0.9668 |
0.0226 | 14.55 | 4000 | 0.1600 | 0.8030 | 0.8482 | 0.8250 | 0.9680 |
0.0226 | 14.91 | 4100 | 0.1696 | 0.8038 | 0.8442 | 0.8235 | 0.9664 |
0.0226 | 15.27 | 4200 | 0.1835 | 0.8227 | 0.8442 | 0.8333 | 0.9684 |
0.0226 | 15.64 | 4300 | 0.1772 | 0.8225 | 0.8382 | 0.8303 | 0.9682 |
0.0226 | 16.0 | 4400 | 0.1833 | 0.8166 | 0.8412 | 0.8287 | 0.9676 |
0.0174 | 16.36 | 4500 | 0.1807 | 0.8268 | 0.8442 | 0.8354 | 0.9671 |
0.0174 | 16.73 | 4600 | 0.1640 | 0.8357 | 0.8432 | 0.8394 | 0.9679 |
0.0174 | 17.09 | 4700 | 0.1769 | 0.8139 | 0.8482 | 0.8307 | 0.9659 |
0.0174 | 17.45 | 4800 | 0.1538 | 0.8541 | 0.8533 | 0.8537 | 0.9719 |
0.0174 | 17.82 | 4900 | 0.1751 | 0.8176 | 0.8382 | 0.8278 | 0.9677 |
0.0143 | 18.18 | 5000 | 0.1625 | 0.8478 | 0.8513 | 0.8495 | 0.9688 |
0.0143 | 18.55 | 5100 | 0.1831 | 0.8419 | 0.8513 | 0.8466 | 0.9705 |
0.0143 | 18.91 | 5200 | 0.1751 | 0.8312 | 0.8462 | 0.8386 | 0.9676 |
0.0143 | 19.27 | 5300 | 0.1685 | 0.8279 | 0.8462 | 0.8370 | 0.9685 |
0.0143 | 19.64 | 5400 | 0.1730 | 0.8219 | 0.8533 | 0.8373 | 0.9668 |
0.0111 | 20.0 | 5500 | 0.1782 | 0.8315 | 0.8482 | 0.8398 | 0.9670 |
0.0111 | 20.36 | 5600 | 0.1788 | 0.8229 | 0.8452 | 0.8339 | 0.9680 |
0.0111 | 20.73 | 5700 | 0.1787 | 0.8191 | 0.8462 | 0.8324 | 0.9668 |
0.0111 | 21.09 | 5800 | 0.1836 | 0.8456 | 0.8533 | 0.8494 | 0.9685 |
0.0111 | 21.45 | 5900 | 0.1814 | 0.8411 | 0.8513 | 0.8462 | 0.9680 |
0.0094 | 21.82 | 6000 | 0.1812 | 0.8145 | 0.8472 | 0.8305 | 0.9653 |
0.0094 | 22.18 | 6100 | 0.1815 | 0.8346 | 0.8523 | 0.8434 | 0.9691 |
0.0094 | 22.55 | 6200 | 0.1746 | 0.8383 | 0.8492 | 0.8437 | 0.9688 |
0.0094 | 22.91 | 6300 | 0.1896 | 0.8425 | 0.8442 | 0.8434 | 0.9679 |
0.0094 | 23.27 | 6400 | 0.1808 | 0.8383 | 0.8442 | 0.8413 | 0.9687 |
0.0074 | 23.64 | 6500 | 0.1680 | 0.8366 | 0.8543 | 0.8454 | 0.9688 |
0.0074 | 24.0 | 6600 | 0.1788 | 0.8343 | 0.8452 | 0.8397 | 0.9677 |
0.0074 | 24.36 | 6700 | 0.1821 | 0.8347 | 0.8422 | 0.8384 | 0.9679 |
0.0074 | 24.73 | 6800 | 0.1759 | 0.8302 | 0.8452 | 0.8376 | 0.9676 |
0.0074 | 25.09 | 6900 | 0.1737 | 0.8310 | 0.8452 | 0.8381 | 0.9676 |
0.0068 | 25.45 | 7000 | 0.1745 | 0.8327 | 0.8452 | 0.8389 | 0.9679 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3